請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22240
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 邱麗珠(Lih-Chu Chiou) | |
dc.contributor.author | Lu-Yang Chang | en |
dc.contributor.author | 張旅揚 | zh_TW |
dc.date.accessioned | 2021-06-08T04:14:13Z | - |
dc.date.copyright | 2010-09-13 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-12 | |
dc.identifier.citation | Amit Z and Galina ZH (1986) Stress-induced analgesia: adaptive pain suppression. Physiol Rev 66:1091-1120.
Anaclet C, Parmentier R, Ouk K, Guidon G, Buda C, Sastre JP, Akaoka H, Sergeeva OA, Yanagisawa M, Ohtsu H, Franco P, Haas HL and Lin JS (2009) Orexin/Hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models. J Neurosci 29:14423-14438. Bajic D and Proudfit HK (1999) Projections of neurons in the periaqueductal gray to pontine and medullary catecholamine cell groups involved in the modulation of nociception. J Comp Neurol 405:359-379. Bartsch T, Levy MJ, Knight YE and Goadsby PJ (2004) Differential modulation of nociceptive dural input to [hypocretin] orexin A and B receptor activation in the posterior hypothalamic area. Pain 109:367-378. Behbehani MM, Park MR and Clement ME (1988) Interactions between the lateral hypothalamus and the periaqueductal gray. J Neurosci 8:2780-2787. Bingham S, Davey PT, Babbs AJ, Irving EA, Sammons MJ, Wyles M, Jeffrey P, Cutler L, Riba I, Johns A, Porter RA, Upton N, Hunter AJ and Parsons AA (2001) Orexin-A, an hypothalamic peptide with analgesic properties. Pain 92:81-90. Boutrel B, Kenny PJ, Specio SE, Martin-Fardon R, Markou A, Koob GF and de Lecea L (2005) Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. Proc Natl Acad Sci U S A 102:19168-19173. Butler RK and Finn DP (2009) Stress-induced analgesia. Prog Neurobiol 88:184-202. Bytner B, Huang YH, Yu LC, Lundeberg T, Nylander I and Rosen A (2001) Nociceptin/orphanin FQ into the rat periaqueductal gray decreases the withdrawal latency to heat and loading, an effect reversed by (Nphe(1))nociceptin(1-13)NH(2). Brain Res 922:118-124. Calo G, Guerrini R, Rizzi A, Salvadori S and Regoli D (2000) Pharmacology of nociceptin and its receptor: a novel therapeutic target. Br J Pharmacol 129:1261-1283. Cheng JK, Chou RC, Hwang LL and Chiou LC (2003) Antiallodynic effects of intrathecal orexins in a rat model of postoperative pain. J Pharmacol Exp Ther 307:1065-1071. Chiou LC, Liao YY, Fan PC, Kuo PH, Wang CH, Riemer C and Prinssen EP (2007) Nociceptin/orphanin FQ peptide receptors: pharmacology and clinical implications. Curr Drug Targets 8:117-135. Connor M, Vaughan CW, Chieng B and Christie MJ (1996) Nociceptin receptor coupling to a potassium conductance in rat locus coeruleus neurones in vitro. Br J Pharmacol 119:1614-1618. Courteix C, Coudore-Civiale MA, Privat AM, Pelissier T, Eschalier A and Fialip J (2004) Evidence for an exclusive antinociceptive effect of nociceptin/orphanin FQ, an endogenous ligand for the ORL1 receptor, in two animal models of neuropathic pain. Pain 110:236-245. Cunningham PM, Goldsmith GE and Hellon RF (1986) Medial hypothalamic stimulation produces analgesia to facial heating in unrestrained rats. Neurosci Lett 68:107-111. de Lecea L, Jones BE, Boutrel B, Borgland SL, Nishino S, Bubser M and DiLeone R (2006) Addiction and arousal: alternative roles of hypothalamic peptides. J Neurosci 26:10372-10375. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS, 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM and Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95:322-327. Dennis SG, Choiniere M and Melzack R (1980) Stimulation-produced analgesia in rats: assessment by two pain tests and correlation with self-stimulation. Exp Neurol 68:295-309. Devine DP, Hoversten MT, Ueda Y and Akil H (2003) Nociceptin/orphanin FQ content is decreased in forebrain neurones during acute stress. J Neuroendocrinol 15:69-74. Duxon MS, Stretton J, Starr K, Jones DN, Holland V, Riley G, Jerman J, Brough S, Smart D, Johns A, Chan W, Porter RA and Upton N (2001) Evidence that orexin-A-evoked grooming in the rat is mediated by orexin-1 (OX1) receptors, with downstream 5-HT2C receptor involvement. Psychopharmacology (Berl) 153:203-209. Filaretov AA, Bogdanov AI and Yarushkina NI (1996) Stress-induced analgesia. The role of hormones produced by the hypophyseal-adrenocortical system. Neurosci Behav Physiol 26:572-578. Finn DP (2009) Endocannabinoid-mediated modulation of stress responses: Physiological and pathophysiological significance. Immunobiology. Flor H, Birbaumer N, Schulz R, Grusser SM and Mucha RF (2002) Pavlovian conditioning of opioid and nonopioid pain inhibitory mechanisms in humans. Eur J Pain 6:395-402. Flor H and Grusser SM (1999) Conditioned stress-induced analgesia in humans. Eur J Pain 3:317-324. Ford GK and Finn DP (2008) Clinical correlates of stress-induced analgesia: evidence from pharmacological studies. Pain 140:3-7. Fuchs PN, Balinsky M and Melzack R (1996) Electrical stimulation of the cingulum bundle and surrounding cortical tissue reduces formalin-test pain in the rat. Brain Res 743:116-123. Furlong TM, Vianna DM, Liu L and Carrive P (2009) Hypocretin/orexin contributes to the expression of some but not all forms of stress and arousal. Eur J Neurosci 30:1603-1614. Gatley SJ, Gifford AN, Volkow ND, Lan R and Makriyannis A (1996) 123I-labeled AM251: a radioiodinated ligand which binds in vivo to mouse brain cannabinoid CB1 receptors. Eur J Pharmacol 307:331-338. Grudt TJ, van den Pol AN and Perl ER (2002) Hypocretin-2 (orexin-B) modulation of superficial dorsal horn activity in rat. J Physiol 538:517-525. Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM, Sinton CM, Sugiyama F, Yagami K, Goto K, Yanagisawa M and Sakurai T (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30:345-354. Harris GC, Wimmer M and Aston-Jones G (2005) A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437:556-559. Helmstetter FJ and Tershner SA (1994) Lesions of the periaqueductal gray and rostral ventromedial medulla disrupt antinociceptive but not cardiovascular aversive conditional responses. J Neurosci 14:7099-7108. Ho Y-C, Lee H-J, Liao Y-Y, Fu S-Y, Teng S-F, Liao H-T, Mackie K and Chiou L-C (2010) Activation of OX1 receptors in the periaqueductal gray leads to antinociception through retrograde endocannabinoid-induced disinhibition. Hohmann AG and Suplita RL, 2nd (2006) Endocannabinoid mechanisms of pain modulation. Aaps J 8:E693-708. Hohmann AG, Suplita RL, Bolton NM, Neely MH, Fegley D, Mangieri R, Krey JF, Walker JM, Holmes PV, Crystal JD, Duranti A, Tontini A, Mor M, Tarzia G and Piomelli D (2005) An endocannabinoid mechanism for stress-induced analgesia. Nature 435:1108-1112. Holland PR, Akerman S and Goadsby PJ (2005) Orexin 1 receptor activation attenuates neurogenic dural vasodilation in an animal model of trigeminovascular nociception. J Pharmacol Exp Ther 315:1380-1385. Holland PR, Akerman S and Goadsby PJ (2006) Modulation of nociceptive dural input to the trigeminal nucleus caudalis via activation of the orexin 1 receptor in the rat. Eur J Neurosci 24:2825-2833. Ida T, Nakahara K, Murakami T, Hanada R, Nakazato M and Murakami N (2000) Possible involvement of orexin in the stress reaction in rats. Biochem Biophys Res Commun 270:318-323. Jenck F, Wichmann J, Dautzenberg FM, Moreau JL, Ouagazzal AM, Martin JR, Lundstrom K, Cesura AM, Poli SM, Roever S, Kolczewski S, Adam G and Kilpatrick G (2000) A synthetic agonist at the orphanin FQ/nociceptin receptor ORL1: anxiolytic profile in the rat. Proc Natl Acad Sci U S A 97:4938-4943. Kajiyama S, Kawamoto M, Shiraishi S, Gaus S, Matsunaga A, Suyama H and Yuge O (2005) Spinal orexin-1 receptors mediate anti-hyperalgesic effects of intrathecally-administered orexins in diabetic neuropathic pain model rats. Brain Res 1044:76-86. Kelsey JE, Hoerman WAt, Kimball LD, 3rd, Radack LS and Carter MV (1986) Arcuate nucleus lesions reduce opioid stress-induced analgesia (SIA) and enhance non-opioid SIA in rats. Brain Res 382:278-290. Kelz MB, Sun Y, Chen J, Cheng Meng Q, Moore JT, Veasey SC, Dixon S, Thornton M, Funato H and Yanagisawa M (2008) An essential role for orexins in emergence from general anesthesia. Proc Natl Acad Sci U S A 105:1309-1314. Knoflach F, Reinscheid RK, Civelli O and Kemp JA (1996) Modulation of voltage-gated calcium channels by orphanin FQ in freshly dissociated hippocampal neurons. J Neurosci 16:6657-6664. Koster A, Montkowski A, Schulz S, Stube EM, Knaudt K, Jenck F, Moreau JL, Nothacker HP, Civelli O and Reinscheid RK (1999) Targeted disruption of the orphanin FQ/nociceptin gene increases stress susceptibility and impairs stress adaptation in mice. Proc Natl Acad Sci U S A 96:10444-10449. Kuwaki T, Zhang W, Nakamura A and Deng BS (2008) Emotional and state-dependent modification of cardiorespiratory function: role of orexinergic neurons. Auton Neurosci 142:11-16. Kuzmin A, Sandin J, Terenius L and Ogren SO (2004) Evidence in locomotion test for the functional heterogeneity of ORL-1 receptors. Br J Pharmacol 141:132-140. Lopez R, Young SL and Cox VC (1991) Analgesia for formalin-induced pain by lateral hypothalamic stimulation. Brain Res 563:1-6. Mayer DJ and Liebeskind JC (1974) Pain reduction by focal electrical stimulation of the brain: an anatomical and behavioral analysis. Brain Res 68:73-93. McDougall SJ, Widdop RE and Lawrence AJ (2005) Central autonomic integration of psychological stressors: focus on cardiovascular modulation. Auton Neurosci 123:1-11. Meunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P, Butour JL, Guillemot JC, Ferrara P, Monsarrat B and et al. (1995) Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 377:532-535. Millan MJ, Gramsch C, Przewlocki R, Hollt and Herz A (1980) Lesions of the hypothalamic arcuate nucleus produce a temporary hyperalgesia and attenuate stress-evoked analgesia. Life Sci 27:1513-1523. Mobarakeh JI, Takahashi K, Sakurada S, Nishino S, Watanabe H, Kato M, Naghdi N and Yanai K (2005a) Enhanced antinociception by intracerebroventricularly administered orexin A in histamine H1 or H2 receptor gene knockout mice. Pain 118:254-262. Mobarakeh JI, Takahashi K, Sakurada S, Nishino S, Watanabe H, Kato M and Yanai K (2005b) Enhanced antinociception by intracerebroventricularly and intrathecally-administered orexin A and B (hypocretin-1 and -2) in mice. Peptides 26:767-777. Mogil JS, Grisel JE, Reinscheid RK, Civelli O, Belknap JK and Grandy DK (1996) Orphanin FQ is a functional anti-opioid peptide. Neuroscience 75:333-337. Mogil JS, Nessim LA and Wilson SG (1999) Strain-dependent effects of supraspinal orphanin FQ/nociceptin on thermal nociceptive sensitivity in mice. Neurosci Lett 261:147-150. Morgan MM, Grisel JE, Robbins CS and Grandy DK (1997) Antinociception mediated by the periaqueductal gray is attenuated by orphanin FQ. Neuroreport 8:3431-3434. Nair SG, Golden SA and Shaham Y (2008) Differential effects of the hypocretin 1 receptor antagonist SB 334867 on high-fat food self-administration and reinstatement of food seeking in rats. Br J Pharmacol 154:406-416. Nambu T, Sakurai T, Mizukami K, Hosoya Y, Yanagisawa M and Goto K (1999) Distribution of orexin neurons in the adult rat brain. Brain Res 827:243-260. Narita M, Nagumo Y, Hashimoto S, Narita M, Khotib J, Miyatake M, Sakurai T, Yanagisawa M, Nakamachi T, Shioda S and Suzuki T (2006) Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. J Neurosci 26:398-405. Neal CR, Jr., Mansour A, Reinscheid R, Nothacker HP, Civelli O, Akil H and Watson SJ, Jr. (1999a) Opioid receptor-like (ORL1) receptor distribution in the rat central nervous system: comparison of ORL1 receptor mRNA expression with (125)I-[(14)Tyr]-orphanin FQ binding. J Comp Neurol 412:563-605. Neal CR, Jr., Mansour A, Reinscheid R, Nothacker HP, Civelli O and Watson SJ, Jr. (1999b) Localization of orphanin FQ (nociceptin) peptide and messenger RNA in the central nervous system of the rat. J Comp Neurol 406:503-547. Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG and Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996-10015. Rademacher DJ, Meier SE, Shi L, Ho WS, Jarrahian A and Hillard CJ (2008) Effects of acute and repeated restraint stress on endocannabinoid content in the amygdala, ventral striatum, and medial prefrontal cortex in mice. Neuropharmacology 54:108-116. Reinscheid RK, Nothacker HP, Bourson A, Ardati A, Henningsen RA, Bunzow JR, Grandy DK, Langen H, Monsma FJ, Jr. and Civelli O (1995) Orphanin FQ: a neuropeptide that activates an opioidlike G protein-coupled receptor. Science 270:792-794. Reiss D, Wichmann J, Tekeshima H, Kieffer BL and Ouagazzal AM (2008) Effects of nociceptin/orphanin FQ receptor (NOP) agonist, Ro64-6198, on reactivity to acute pain in mice: comparison to morphine. Eur J Pharmacol 579:141-148. Rhodes DL and Liebeskind JC (1978) Analgesia from rostral brain stem stimulation in the rat. Brain Res 143:521-532. Rizzi A, Marzola G, Bigoni R, Guerrini R, Salvadori S, Mogil JS, Regoli D and Calo G (2001) Endogenous nociceptin signaling and stress-induced analgesia. Neuroreport 12:3009-3013. Robinson DA, Wei F, Wang GD, Li P, Kim SJ, Vogt SK, Muglia LJ and Zhuo M (2002) Oxytocin mediates stress-induced analgesia in adult mice. J Physiol 540:593-606. Sakamoto F, Yamada S and Ueta Y (2004) Centrally administered orexin-A activates corticotropin-releasing factor-containing neurons in the hypothalamic paraventricular nucleus and central amygdaloid nucleus of rats: possible involvement of central orexins on stress-activated central CRF neurons. Regul Pept 118:183-191. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richarson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ and Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:1 page following 696. Samson WK, Bagley SL, Ferguson AV and White MM (2007) Hypocretin/orexin type 1 receptor in brain: role in cardiovascular control and the neuroendocrine response to immobilization stress. Am J Physiol Regul Integr Comp Physiol 292:R382-387. Samson WK, Taylor MM and Ferguson AV (2005) Non-sleep effects of hypocretin/orexin. Sleep Med Rev 9:243-252. Shirasaki T, Houtani T, Sugimoto T and Matsuda H (2001) Spontaneous transient outward currents: modulation by nociceptin in murine dentate gyrus granule cells. Brain Res 917:191-205. Smart D, Sabido-David C, Brough SJ, Jewitt F, Johns A, Porter RA and Jerman JC (2001) SB-334867-A: the first selective orexin-1 receptor antagonist. Br J Pharmacol 132:1179-1182. Smith RJ, See RE and Aston-Jones G (2009) Orexin/hypocretin signaling at the orexin 1 receptor regulates cue-elicited cocaine-seeking. Eur J Neurosci 30:493-503. Suaudeau C, Florin S, Meunier JC and Costentin J (1998) Nociceptin-induced apparent hyperalgesia in mice as a result of the prevention of opioid autoanalgesic mechanisms triggered by the stress of an intracerebroventricular injection. Fundam Clin Pharmacol 12:420-425. Suplita RL, 2nd, Farthing JN, Gutierrez T and Hohmann AG (2005) Inhibition of fatty-acid amide hydrolase enhances cannabinoid stress-induced analgesia: sites of action in the dorsolateral periaqueductal gray and rostral ventromedial medulla. Neuropharmacology 49:1201-1209. Suplita RL, 2nd, Gutierrez T, Fegley D, Piomelli D and Hohmann AG (2006) Endocannabinoids at the spinal level regulate, but do not mediate, nonopioid stress-induced analgesia. Neuropharmacology 50:372-379. Suyama H, Kawamoto M, Shiraishi S, Gaus S, Kajiyama S and Yuge O (2004) Analgesic effect of intrathecal administration of orexin on neuropathic pain in rats. In Vivo 18:119-123. Tejwani GA and Richard CW, 3rd (1986) Effect of electrolytic and chemical ventromedial hypothalamic lesions on food intake, body weight, analgesia and the CNS opioid peptides in rats and mice. NIDA Res Monogr 75:497-500. Tian JH, Xu W, Fang Y and Han JS (1997) [Antagonistic effect of orphanin FQ on morphine analgesia in rat brain]. Sheng Li Xue Bao 49:333-338. Truesdell LS and Bodnar RJ (1987) Reduction in cold-water swim analgesia following hypothalamic paraventricular nucleus lesions. Physiol Behav 39:727-731. van den Pol AN (1999) Hypothalamic hypocretin (orexin): robust innervation of the spinal cord. J Neurosci 19:3171-3182. Vanderah TW, Raffa RB, Lashbrook J, Burritt A, Hruby V and Porreca F (1998) Orphanin-FQ/nociceptin: lack of anti nociceptive, hyperalgesic or allodynic effects in acute thermal or mechanical tests following intracerebroventricular or intrathecal administration to mice or rats. Eur J Pain 2:267-278. Vaughan CW (2006) Stressed-out endogenous cannabinoids relieve pain. Trends Pharmacol Sci 27:69-71. Watanabe S, Kuwaki T, Yanagisawa M, Fukuda Y and Shimoyama M (2005) Persistent pain and stress activate pain-inhibitory orexin pathways. Neuroreport 16:5-8. Wiedenmayer CP and Barr GA (2000) Mu opioid receptors in the ventrolateral periaqueductal gray mediate stress-induced analgesia but not immobility in rat pups. Behav Neurosci 114:125-136. Willer JC, Dehen H and Cambier J (1981) Stress-induced analgesia in humans: endogenous opioids and naloxone-reversible depression of pain reflexes. Science 212:689-691. Winsky-Sommerer R, Yamanaka A, Diano S, Borok E, Roberts AJ, Sakurai T, Kilduff TS, Horvath TL and de Lecea L (2004) Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J Neurosci 24:11439-11448. Xie X, Wisor JP, Hara J, Crowder TL, LeWinter R, Khroyan TV, Yamanaka A, Diano S, Horvath TL, Sakurai T, Toll L and Kilduff TS (2008) Hypocretin/orexin and nociceptin/orphanin FQ coordinately regulate analgesia in a mouse model of stress-induced analgesia. J Clin Invest 118:2471-2481. Xu X, Grass S, Hao J, Xu IS and Wiesenfeld-Hallin Z (2000) Nociceptin/orphanin FQ in spinal nociceptive mechanisms under normal and pathological conditions. Peptides 21:1031-1036. Yamamoto T, Nozaki-Taguchi N and Chiba T (2002) Analgesic effect of intrathecally administered orexin-A in the rat formalin test and in the rat hot plate test. Br J Pharmacol 137:170-176. Yamamoto T, Saito O, Shono K, Aoe T and Chiba T (2003a) Anti-mechanical allodynic effect of intrathecal and intracerebroventricular injection of orexin-A in the rat neuropathic pain model. Neurosci Lett 347:183-186. Yamamoto T, Saito O, Shono K and Hirasawa S (2003b) Activation of spinal orexin-1 receptor produces anti-allodynic effect in the rat carrageenan test. Eur J Pharmacol 481:175-180. Yamanaka A, Beuckmann CT, Willie JT, Hara J, Tsujino N, Mieda M, Tominaga M, Yagami K, Sugiyama F, Goto K, Yanagisawa M and Sakurai T (2003) Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 38:701-713. Zaratin PF, Petrone G, Sbacchi M, Garnier M, Fossati C, Petrillo P, Ronzoni S, Giardina GA and Scheideler MA (2004) Modification of nociception and morphine tolerance by the selective opiate receptor-like orphan receptor antagonist (-)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9- tetrahydro-5H-benzocyclohepten-5-ol (SB-612111). J Pharmacol Exp Ther 308:454-461. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22240 | - |
dc.description.abstract | 致痛素(nociceptin),即orphanin FQ, (N/OFQ),是ORL1的內生性促效劑。ORL1,全名為類鴉片孤兒受器(opioid receptor-like orphan receptor 1)是第一個去孤兒化的G蛋白偶合受體(G-protein coupled receptor (GPCR)) , 其後被列入鴉片受器家族, 並重新命名為NOR (N/OFQ peptide receptor)。第二個去孤兒化的G蛋白偶合受體為OX受器,包含了OX1及OX2兩種,其內生性促效劑由orexins A和B組成(或名為hypocretin 1 和2),合稱為食慾素(orexins)或下視丘素(hypocretins)。N/OFQ 會抑制神經細胞的活性,而orexins則會促進其活性;將N/OFQ直接打入大腦會引起痛覺過敏(hyperalgesia),給予orexins卻可以止痛。一般認為N/OFQ產生痛覺過敏是因為抑制了腦室內(i.c.v.)注射過程產生的緊張所致止痛 (stress-induced analgesia, SIA),而有報告指出orexins有貢獻於SIA的產生。SIA是當人體或動物緊張時痛覺感受降低的一種現象,是由於中腦環島水管灰質(periaqueductal gray, PAG)內的腦內啡或腦內大麻素,活化這個負責下行性疼痛抑制訊息的腦區所產生的止痛效果。
我們之前發現在中腦環島水管灰質腹側區中注射orexin A會活化內生性大麻素的訊息傳遞路徑而產生止痛反應。Orexin A可活化OX1,一種Gq蛋白偶合受體,繼而促進phospholipase C (PLC)生成diacylglycerol (DAG),接著由DAG lipase (DAGL)將DAG轉變為內生性大麻素之一的2-arachidonoylglycerol (2-AG)。2-AG會逆行活化突觸前的CB1受器,進而抑制GABA釋放。抑制中腦環島水管灰質的GABAergic transmission可以活化下行性疼痛抑制路徑,進一步產生止痛反應。已有證據指出緊張反應會活化下視丘的orexin神經細胞,促使orexins釋放,因此我們假設:緊張反應會活化投射到中腦環島水管灰質的下視丘orexin神經細胞,在中腦環島水管灰質釋放的orexin活化了OX1,接著經由PLC-DAGL的酵素路徑產生內生性大麻素所媒介的逆行性抑制反應,最終導致下行性疼痛抑制路徑的活化,產生止痛。另外,我們進一步假設在緊張時,將N/OFQ注射至腦內所觀察到的痛覺過敏是由於N/OFQ引發下視丘orexin神經細胞的過極化,降低orexin的釋放量,使得中腦環島水管灰質內的orexin和其下游內生性大麻素所調控的SIA被抑制,而產生的疼痛反應。 我們得到下列結果:1) 在SIA時,由免疫染色看到下視丘orexin神經細胞被激活;2) 在熱板實驗中,在老鼠上給限制行動之壓力所致SIA可以經由腹腔注射OX1或CB1拮抗劑所抑制;3) 在熱板實驗中,SIA可以經由PAG埋管給OX1或CB1拮抗劑所抑制;4)SIA的表現似乎是透過OX1受體所媒介而不是OX2;5)NOR致活劑似乎參與SIA的動物模式;6)Ro 64-6198具有活動力低下的表現。 因此結論出:緊張反應會活化下視丘orexin神經細胞,在中腦環島水管灰質釋放的orexin活化了OX1,接著經由酵素路徑產生內生性大麻素所媒介的逆行性抑制反應,最終產生止痛。 | zh_TW |
dc.description.abstract | Nociceptin, also named orphanin FQ, (N/OFQ) is the endogenous agonist of ORL1, opioid receptorlike orphan receptor 1, the 1st de-orphanized G-protein coupled receptor (GPCR) which was renamed as N/OFQ peptide receptor (NOR) and enlisted in the opioid receptor family. Orexins, consisting of orexins A and B (also named hypocretin 1 and 2), are endogenous peptide agonists of the 2nd de-orphanized GPCR family, OX1 and OX2. Nociceptin inhibits, while orexins enhance, neuronal activity. Nociceptin was so named because it induces hyperalgesia, but orexins are analgesic, when given in the brain. The hyperalgesic effect of N/OFQ was believed to be due to its inhibition of stress-induced analgesia (SIA) generated by the i.c.v. procedure. Orexins, however, were reported to contribute to SIA. SIA is a phenomenon of reducing pain sensation in humans or animals during stress and can be mediated by endogenous opioids or cannabinoids in the periaqueductal gray (PAG), a midbrain region for initiating descending pain inhibition.
We previously found that microinjection of orexin A in the ventrolateral PAG (vlPAG) induced analgesia through endocannabinoid signaling. Orexin A activates the OX1 receptors, a GqPCR family, leading to phospholipase C (PLC) activation and yielding diacylglycerol (DAG) which can be converted by DAG lipase (DAGL) into 2-arachidonoylglycerol (2-AG), an endocannabinoid. The generated 2-AG can produce retrograde inhibition of GABA release by activating the presynaptic CB1 receptors. Inhibition of GABAergic synaptic neurotransmission in the vlPAG results in activation of the descending pain inhibitory pathway, leading to analgesia. Since hypothalamic orexins are activated during stress and orexins contribute to SIA, we hypothesize that during stress, the orexin neurons in the lateral hypothalamus, which project to the vlPAG are activated; the released orexins then activate the OX1 receptors and initiate the endocannabinoid mediated retrograde disinhibition in the PAG via PLC-DAGL enzymatic pathway. In addition, we also hypothesize that N/OFQ, when given in the brain, will hyperpolarize the hypothalamic orexins to decrease the orexin release during stress, and then produces hyperalgesia through inhibiting orexin-mediated SIA in the PAG, which is endocannabinoid-dependent. We got the results : 1) orexin neurons are activated during SIA by the immunohistochemical approach; 2) SIA was induced by restrain stress in naïve mice but not in the mice pre-injected intraperitoneally with OX1R antagonist (SB 334867) or CB1 antagonist (AM 251) in the hot-plate test; 3) SIA was blocked by intra-PAG microinjection of OX1 antagonist (SB334867) or CB 1 antagonist (AM 251) in the hot-plate test.; 4) SIA behavior seems to be expressed through the OX 1 receptor, but not OX 2 receptor mediated; 5) NOR agonist seems to play a role in the stress-induced analgesia animal model; 6) Ro 64-6198 has hypolocomotor activity effect. According to our present results, we can conclude that: the activation of orexin neurons during the stress releases orexin to activate the OX1 receptor to generate the endocannabinoid by enzyme system to perform the analgesia. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T04:14:13Z (GMT). No. of bitstreams: 1 ntu-99-R97443017-1.pdf: 701224 bytes, checksum: 9c895c6768366e2062a7c91ede8b566a (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員會審定書 ……………………………………………………i
誌謝 ……………………………………ii 中文摘要 (Abstract in Chinese) ……………………………iii 英文摘要 (Abstract in English)…………………………………iv Introduction …………………………………………………………1 Materials and methods ……………………………………………14 Results …………………………………………………………20 Discussion ……………………………………………………………27 Figures …………………………………………………………………34 References ……………………………………………………………49 | |
dc.language.iso | en | |
dc.title | 內生性下視丘素透過中腦環導水管灰質內生性大麻酯之逆行性訊息貢獻於緊張導致之止痛 | zh_TW |
dc.title | Endogenous orexins contribute to stress-induced analgesia through endocannabinoid retrograde signaling in the ventrolateral periaqueductal gray | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陶寶綠,何英剛,陳景宗,黃玲玲 | |
dc.subject.keyword | orexin,SIA,PAG, | zh_TW |
dc.subject.keyword | 下視丘素,緊張導致之止痛,中腦環導水管灰質, | en |
dc.relation.page | 64 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2010-08-13 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥理學研究所 | zh_TW |
顯示於系所單位: | 藥理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 684.79 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。