Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22233
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃鵬林(Pung-Ling Huang)
dc.contributor.authorShin-Yu Chenen
dc.contributor.author陳欣郁zh_TW
dc.date.accessioned2021-06-08T04:14:08Z-
dc.date.copyright2010-08-18
dc.date.issued2010
dc.date.submitted2010-08-13
dc.identifier.citation陸、參考文獻
李盛新. 2006. 香蕉ACC氧化基因啟動子活性分析與默化質體之轉殖. 國立臺灣大學園藝學研究所碩士論文.
林宜佑. 2004. 應用RNA干擾技術抑制香蕉ACC氧化酶基因表現之研究. 國立臺灣大學園藝學研究所碩士論文.
連雅苹. 2006. 蘭花抗病毒專一性載體之功能分析與文心蘭基因轉殖之研究. 國立臺灣大學園藝學研究所碩士論文.
鄭芳宜. 2003. 蝴蝶蘭及文心蘭基因轉殖之研究. 國立臺灣大學園藝學研究所碩士論文.
蔡幸君. 2004. 四種園藝作物EIN3同源cDNA之選殖與分析.國立臺灣大學園藝學研究所碩士論文.
林良懋. 1997. 文心蘭產銷整合座談會紀要. 台灣花卉園藝 122: 20-21.
黃肇家. 1998. 文心蘭切花之乙烯生成以及外加乙烯與去除花藥蓋對花朵品質之影響. 中華農業研究 47: 125-134.
黃肇家.1998. 文心蘭切花外銷採後處理近況. 台灣花卉園藝 135: 40-46.
黃肇家、黃慧穗、蔡金玉. 2005. 1-MCP 與‘農試文保一號’之處理方法以及對外銷文心蘭切花保鮮之效果. 園產品採後處理技術之研究與應用研討會專刊191-198.
黃肇家、杜武俊、陳弘毅、蔡金玉、賴淑芬、黃慧穗. 2003.‘農試文保一號’與 1-MCP對文心蘭切花經模擬銷日運輸及檢疫燻蒸之保鮮效果. 中國園藝 49:55-62..
黃肇家、郭坤峰、李仍亮. 2003. 台灣文心蘭切花外銷之保鮮技術及應用. 農政與農情 130: 92-98.
廖育辰. 2008. 香蕉ACC氧化基因默化轉殖之研究. 國立臺灣大學園藝學研究所碩士論文.
Akbergenov, R., A. Si-Ammour, T. Blevins, I. Amin, C. Kutter, H. Vanderschuren, P. Zhang, W. Gruissem, F. Meins, T. Hohn, and M. M. Pooggin. 2006. Molecular characterization of geminivirus-derived small RNAs in different plant species. Nucleic Acids Res. 34:462–471.
Bleecker, A. B., M. A Estelle, C. Somerville, and H. Kende. 1988. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241: 1086–1089.
Chan, Y. F., N. Etheridge, and G. E. Schaller. 2005. Ethylene signal transduction. Ann. Bot. 95: 901–915.
Chen, G., L. Alexander, and D. Grierson. 2004. Constitutive expression of EIL-like transcription factor partially restores ripening in the ethylene-insensitive Nr tomato mutant. J. Expt. Bot. 55: 1491–1497.
Chen, J. T., and W. C. Chang. 2000. Efficient plant regeneration through somatic embryogenesis from callus cultures of Oncidium (Orchidaceae). Plant Sci. 160: 87-93.
Chen, J. T., and W. C. Chang. 2001. Effects of auxins and cytokinins on direct somatic embryogenesis on leaf explants of Oncidium ‘Gower Ramsey’. Plant Growth Regul. 34: 229-232.
Chen, J. T., C. Chang, and W. C. Chang. 1999. Direct somatic embryogenesis on leaf explants of Oncidium Gower Ramsey and subsequent plant regeneration. Plant Cell Rep. 19:143-149.
Chen, H., L. Xue, S. Chintamanani, H. Germain, H. Lin, H. Cui, R. Cai, J. Zuo, X. Tang, X. Li, H. Guo, and J. M. Zhou. 2009. ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity in Arabidopsis. Plant Cell (published online).
Chao, Q., M. Rothenberg, R. Solano, G. Roman, W. Terzaghi, and J. R. Ecker. 1997. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89: 1133–1144.
Close, D. C., and C. L. Beadle. 2003. The ecophysiology of foliar anthocyanin. Bot. Rev. 69: 149–161.
Clough, J., and Bent A. F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735–743.
Danny, C. A. 1987. An efficient vecter-primer cDNA cloning system. Meth. Enzymol. 152:41-64.
Down, R. J., H. W. Siegelman, W. L. Butler, and S. B. Hendricks. 1965. Photoreceptive pigments for anthocyanin synthesis in apple skin. Nature 205: 909-910.
Dykxhoorn, D. M., C. D.Novina, and P. A. Sharp. 2003. Killing the messenger:short RNAs that silence gene expression. Nat. Rev. Mol. Cell Biol. 4:457-467.
Eamens, A., M. B. Wang, N. A., and Smith, P. Waterhouse. 2008. RNA silencing in plants: yesterday, today and tomorrow. Plant Physiol. 146: 456–468.
Feinberg, A. P., and Vogelstein, B. 1983. A technique for randiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132: 6-13.
Fettke, J., M. Hejazi, J. Smirnova, E. Höchel, M. Stage, M. Steup. 2009. Eukaryotic starch degradation: integration of plastidial and cytosolic pathways. J. Exp. Bot. 60:2907–2922.
Fire, A., S. Xu, M. K. Montgomery, S. A. Kostos, S. E. Driver, and C. C. Mello. 1998. Potent and specific genetic interfernce by double-strand RNA in Caenorhabditis elegans. Nature 391:806-811.
Finnie, S. J., W. Powll, and A. F. Dyer. 1989. The effect of carbohydrate composition and concentration on anther culture response in barley (Hordeum vulgare L.). Plant Breed. 103: 110-118.
Goh, C. J., A. H. Halevy, R. Engel and A.M. Kofranek. 1985. Ethylene evolution and sensitivity in cut orchid flowers. Sci. Hortic. 26: 57-67.
Gou, H., and J. R Ecker. 2003. Plant responses to ethylene gas are mediated by SCF EBF1/EBF2-dependent proteolysis of EIN3 transcription factor. Cell 115: 667-677.
Hanahan, D.1983. Studies on transformation of Escherichia coli with plasmid. J. Mol. Biol. 166:557-580.
Hansen, G., and Durham N. C. 2000. Plant transformation methods. US Patent.
Hiraga, S., K. Sasaki, T. Hibi, H. Yoshida, E. Uchida, S. Kosugi, T. Kato, T. Mie, H. Ito, S. Katou, S. Seo, H. Matsui, Y. Ohashi, and I. Mitsuhara. 2009. Involvement of two rice ETHYLENE INSENSITIVE3-LIKE genes in wound signaling. Mol. Genet. Genomics 282: 517–529.
Hofagen, R., and L. Willmitzer. 1988. Storage of competent cells for Agrobacterium transformation. Nucleuc Acids Res. 15: 9877.
Hong, P. I., J. T. Chen, and W. C. Chang. 2008. Promotion of direct somatic embryogenesis of Oncidium by adjusting carbon sources. Biologia Plantarum 52 : 597-600.
Horsch, R. B., J. E. Fry, N. L. Hoffmann, D. Erichholtz, S. G. Rogers, and R. T. Fraley. 1985. A Simple and General Method for Transferring Genes into Plants. Science 227:1229-1231.
Jheng, F. Y., Y. Y. Do, Y. W. Liauh, J. P. Chung, and P. L. Huang. 2006. Enhancement of growth and regeneration efficiency from embryogenic callus cultures of Oncidium ‘Gower Ramsey’ by adjusting carbohydrate sources. Plant Sci. 170: 1133–1140.
Kendrick, M. D., and C. Chang. 2008. Ethylene signaling: new levels of complexity and regulation. Curr. Opin. Plant Biol.11: 1-7.
Khanna, H. K., J. Y. Paul, R. M. Harding, M. B. Dickman, and J. L. Dale. 2007. Inhibition of Agrobacterium-induced cell death by antiapoptotic gene expression leads to very high transformation efficiency of banana. MPMI 20: 1048–1054.
Larissa, M. B., and J. M. Alonso. 2006. Molecular mechanisms of ethylene signaling in Arabidopsis. Mol. BioSyst. 2: 165-173.
Lazo, G. R., Stein, P. A., and Ludwig, R. A. 1991. A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology. 9: 963-967.
Lee, J. H., X. W. Deng, and W. T. Kim. 2006. Possible role of light in the maintenance of EIN3/EIL1 stability in Arabidopsis seedlings. Biochem. Biophys. Res. Commun. 35: 484–491.
Li, S. H., C. S. Kuoh, Y. H. Chen, H. H. Chen, and W. H. Chen. 2005. Osmotic sucrose enhancement of single-cell embryogenesis and transformation effciency in Oncidium. Plant Cell Tissue Organ Cult. 81: 183-192.
Liau C. H., J.C. Lu, V. Prasad, H.H. Hsiao, S. J. You, J. T. Lee, N. S. Yang, H. E. Huang, T. Y. Feng, W. H. Chen, and M. T. Chan. 2003a. The sweet pepper ferredoxin-like protein (pflp) conferred resistance against soft rot disease in Oncidium orchid. Transgenic Res. 12: 329–336.
Liau C. H, S. J. You, V. Prasad, H. H. Hsiao, J. C. Lu, N. S. Yang, and M. T. Chan. 2003b. Agrobacterium tumefaciens-mediated transformation of an Oncidium orchid. Plant Cell Rep. 21:993–998.
Lichtenthaler, H. K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth. Enzymol. 148: 350-382.
Liu, S., L. Xu, Z. Jia, Y. Xu, Q. Yang, Z. Fei, X. Lu, H. Chen, and S. Huang. 2008. Genetic association of ETHYLENE-INSENSITIVE3-like sequence with the sex-determining M locus in cucumber (Cucumis sativus L.). Theor. Appl. Genet. 117: 927–933.
Liu, T. H. A., J. J. Lin, and R. Y. Wu. 2006. The effects of using trehalose as a carbon source on the proliferation of Phalaenopsis and Doritaenopsis protocorm-like-bodies. Plant Cell, Tiss. Org. Cult. 86:125–129.
Lo´pez-Go´mez, R., J. L. Cabrera-Ponce, L. J. Saucedo-Arias, L. Carreto-Montoya, R. Villanueva-Arce, J. C. Dı´az-Perez, M. A. Go´mez-Lim, and L. Herrera-Estrella. 2009. Ripening in papaya fruit is altered by ACC oxidase cosuppression. Transgenic Res. 18:89–97.
Matzke, M. A. and A. J. M. Matzke. 1995. How and why do plants inactivate homologous (trans) genes? Plant Physiol. 107:6679–6685.
Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473-497.
Napoli, C., C. Lemieux, and R. Jorgensen. 1990. lntroduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell:2:279-289.
Nishimoto, T., M. Nakano, T. Nakada, H. Chaen, S. Fukuda, T. Sugimoto, M. Kurimoto, and Y. Tsujisaka. 1996. Purification and properties of a novel enzyme, trehalose synthase, from Pimelobacter sp. R48. Biosci. Biotechnol. Biochem. 60: 640–644.
Pandey, A., and M. Mann. 2000. Proteomics to study genes and genomes. Nature 405: 837-846.
Raffeiner, B., M. Serek, and T. Winkelmann. 2009. Agrobacterium tumefaciens-mediated transformation of Oncidium and Odontoglossum orchid species with the ethylene receptor mutant gene etr1-1. Plant Cell Tiss. Organ Cult. 98:125–134
Roman, G., B. Lubarsky, J. J. Kieber, M. Rothenbery, and J. R. Ecker, 1995. Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway. Genetics 139: 1393-1409.
Sambrook, J., E. F. Fritisch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2nd edition. Cold Spring Harbor Laboratory Press, New York.
Schiraldi, C., I. D. Lernia, and M. D. Rosa. 2002. Trehalose production: exploiting novel approaches. Trends Biotechnol. 20 : 420-425.
Serek, M., E. C. Sisler, and M. S. Reid. 1995. Effects of 1-MCP on the vase life and ethylene response of cut flowers. Plant Growth Regul. 16: 93–97.
Smith, N. A., S. P. Singh, M. B. Wang, P. A. Stoutjesdijk, A. G. Green, and P. M. Waterhouse. 2000. Total silencing by intron-spliced hairpin RNAs. Nature 407:319-320.
Solano, R., A. Stepanova, Q. Chao, and J. R. Ecker. 1998. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev. 12: 3703–3714.
Solfanelli, C., A. Poggi, E. Loreti, A. Alpi, and P. Perata. 2006. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol. 140:637–646.
Southern, E. M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503-517.
Stevenson, C. C., and G. N. Harrington. 2009. The impact of supplemental carbon sources on Arabidopsis thaliana growth, chlorophyll content and anthocyanin accumulation. Plant Growth Regul. 59:255–271.
Suárez, R., C. Calderón, and G. Iturriaga. 2009. Enhanced tolerance to multiple abiotic stresses in transgenic Alfalfa accumulating trehalose. Crop Sci. 49:1791–1799.
Teng, S., J. Keurentjes, L. Bentsink, M. Koornneef, and S. C. M. Smeekens. 2005. Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol. 139:1840–1852.
To, J. P. C., W. D. Reiter, and S. I. Gibson. 2003. Chloroplast biogenesis by Arabidopsis seedlings is impaired in the presence of exogenous glucose. Physiol. Plantarum 118:456–463.
Tokuhara K., and M. Mii. 2003. Highly-efficient somatic embryogenesis from cell suspension cultures of phalaenopsis orchids by adjusting carbohydrate sources. In Vitro Cell. Dev. Biol.-Plant 39:635–639.
Vanderschuren, H., R. Akbergenov, M. M. Pooggin, T. Hohn, W. Gruissem, and P. Zhang. 2007. Transgenic cassava resistance to African cassava mosaic virus is enhanced by viral DNA-A bidirectional promoter-derived siRNAs. Plant Mol. Biol. 64:549–557.
Wesley, S. V., C. A. Helliwell1, N. A. Smith, M. B. Wang, D. T. Rouse, Q. Liu, P. S. Gooding, S. P. Singh, D. Abbott, P. A. Stoutjesdijk, S. P. Robinson, A. P. Gleave, A. G. Green, and P. M. Waterhouse. 2001. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 27:581-590.
Wingler, A. 2002. The function of trehalose biosynthesis in plants. Phytochemistry 60: 437–440.
Wingler, A., A. von Schaewen, R. C. Leegood, P. J. Lea, and W. P. Quick. 1998. Regulation of leaf senescence by cytokinin, sugars and light. Plant Physiol 116:329–335.
Wu, I. F., J. T. Chen, and W. C. Chang. 2004. Effects of auxins and cytokinins on embryo formation from root-derived callus of Oncidium ‘Gower Ramsey’. Plant Cell Tissue Organ Cult. 77: 107-109.
Xiong, A. S., Q. X. Yao, R. H. Peng, X. Li, P. L. Han, and H. Q. Fan. 2005. Different effects on ACC oxidase gene silencing triggered by RNA interference in transgenic tomato. Plant Cell Rep 23:639–646.
Yamasaki, S., N. Fujii, S. Matsuura, H. Mizusawa, and H. Takahashi. 2001. The M locus and ethylene-controlled sex determination in andromonoecious cucumber plants. Plant Cell Physiol. 42: 608–619.
Yang, S. F., and Hoffman N. E. 1984. Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 35: 155–189
Yanagisawa, S., S. D. Yoo, and J. Sheen. 2003. Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature 425: 521–525.
Yoo, S. D., Y. H. Cho, and J. Sheen. 2007. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature protocol 2: 1565-1572.
Yoo, S. D., C. Younghee, and J. Sheen. 2009. Emerging connections in the ethylene signaling network. Trends Plant Sci.14: 270-279.
Zamore, P. D., T. Tuschi, P. A. Sharp, and D. P. Bartel. 2000. RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25-33.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22233-
dc.description.abstract為了確定文心蘭EIN3 (ETHYLENE-INSENSITIVE 3) 之功能,本研究構築 2XCaMV35S::OgEIN3質體,以農桿菌花序浸染法轉入阿拉伯芥突變株ein3 中,進行功能性互補分析。經分子檢測確認轉殖株後,觀察其外表型、株高、鮮乾重及葉綠素含量,均恢復與野生型之相同型態,顯示文心蘭OgEIN3具有和阿拉伯芥EIN3相同之功能。
在文心蘭癒傷組織再生方面,以不同醣類組合測試對文心蘭癒傷組織再生的影響,結果以10 g/L Sucrose和20 g/L Trehalose組合的培養基,對文心蘭癒傷組織增長量、擬原球體增殖和抽芽較好,於光照環境下兩個月,即可再生成植株,而Maltose和Trehalose的組合對生成植株有較好的影響,醣類濃度較高的培養基,對於植株增生、再生成擬原球體和抽芽方面都有較佳的影響。分析不同醣類組合培養基對文心蘭植株葉片總葉綠素、類胡蘿蔔素及花青素之影響,培養在10 g/L Sucrose和5 g/L Maltose組合培養基,總葉綠素含量最多,類胡蘿蔔素最高為培養在5 g/L Maltose和10 g/L Trehalose組合培養基的植株,培養在10 g/L Sucrose和20 g/L Maltose組合培養基六個月的葉片花青素含量最高。
將功能確認後之文心蘭OgEIN3,構築為基因默化質體,以農桿菌媒介法轉入文心蘭癒傷組織或葉片中,希望能阻斷乙烯訊息傳導路徑,延長切花壽命,以提高其經濟價值。轉殖後之擬轉殖細胞經長時間篩選後,以GUS活性染色確認擬轉殖細胞,具GUS反應。但文心蘭癒傷組織經轉殖後死亡率高且轉殖效率不佳,抽取經轉殖之癒傷組織基因組DNA,顯示有小片段DNA (DNA laddering) 的發生,但如進行農桿菌轉殖前,先對癒傷組織Heat shock預處理,可有效減緩農桿菌對癒傷組織造成之PCD反應。
zh_TW
dc.description.abstractThe cut flower of Oncidium Gower Ramsey is one of the most important export flowers in Taiwan. After cut flowers are harvested, the operation of classification and selection of flowers results in the dislodgment of pollinia cap and petal senescence induced by ethylene production. Therefore, it is important to delay Oncidium senescence and decrease flower wilt efficiency. To confirm EIN3 of Oncidium function, the 2XCaMV35S::OgEIN3 construct was transformed into Arabidopsis ein3 mutant for complementation test. The phenotype, length, weight and chlorophyll content of complementation line were the same as wild-type. These results indicate that function of OgEIN3 is the same as Arabidopsis EIN3.
MS medium in half strength supplemented with either 10 g/L sucrose and 20 g/L trehalose or 10 g/L sucrose and 20 g/L maltose was more effective for the formation of PLB, development and growth of plantlets than supplementation with other carbohydrate sources. Effect of carbohydrate source and concentration on chlorophyll, carotenoid and anthocyanin content in 6 month old Oncidium Gower Ramsey calli was carried out. Plantlet cultured on 10 g/L sucrose and 5 g/L maltose had highest chlorophyll content. The highest carotenoid content was cultured on 5 g/L maltose and 10 g/L trehalose, and plantlet cultured on 10 g/L sucrose and 20 g/L maltose had highest anthocyann content.
To prolong vase life of Oncidium, OgEIN3 RNA-mediated silencing construct was transformed into Oncidium calli or leaves by Agrobacterium tumefaciens. Oncidium transformation efficiency was low. Agrobacterium-induced nuclear DNA fragmentation was found in Oncidium calli, and this phenomenon could be partially inhibited by heat shock.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:14:08Z (GMT). No. of bitstreams: 1
ntu-99-R97628137-1.pdf: 5732084 bytes, checksum: df92909951beb9df00eb7c7672cd55c0 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目錄
中文摘要………………………………………………………………………i
英文摘要 (Abstract) ………………………………………………………….ii
壹、前言………………………………………………………………………1
貳、前人研究…………………………………………………………………2
一、延緩花朵老化之方法……………………………………………………2
(一) 乙烯對文心蘭之影響……………………………………………………2
(二) 利用乙烯抑制劑延緩花朵老化…………………………………………2
二、乙烯訊息傳導相關蛋白EIN3……………………………………….......2
(一) 乙烯在植物中所扮演的角色……………………………………………2
(二) 乙烯生合成途徑…………………………………………………………3
(三) 乙烯訊息傳導途徑…………………………………………………........3
(四) EIN3基因結構及基因功能……………………………………………...3
(五) EIN3蛋白結構與功能特性……………………………………………...4
(六) 外施葡萄糖、光線、乙烯對 EIN3/EIL功能之影響……………….....5
(七) EIN3其他生理功能……………………………………………………...6
(八) 文心蘭EIN3基因之選殖與分析……………………………………….9
三、基因默化機制與應用……………………………………………………9
(一) RNAi之原理…………………………………………………………......9
(二) 基因默化應用…………………………………………………………...10
四、文心蘭癒傷組織與體胚之誘導與再生…………………………………11
(一) 癒傷組織誘導與再生…………………………………………….……..11
(二) 直接體胚誘導與再生……………………………………………………12
(三) 醣類影響文心蘭再生……………………………………………………12
五、文心蘭基因轉殖………………………………………………………….13
(一) 農桿菌轉殖法……………………………………………………………13
(二) 基因槍轉殖法……………………………………………………………14
参、材料與方法……………………………………………………………......15
一、試驗材料……………………………………………………………………15
(一) 植物材料…………………………………………………………………..15
(二) 質體材料…………………………………………………………………..15
(三) 菌種………………………………………………………………………..18
二、試驗方法…………………………………………………………………...21
(一) 轉殖質體之構築…………………………………………………………..21
(二) 農桿菌轉型與檢測………………………………………………………..22
(三) 阿拉伯芥之基因轉殖與篩選……………………………………..……....24
(四) 阿拉伯芥互補測試生理分析……………………….…………….………25
(五) 擬轉殖株之分析…………..………………………………………………26
(六) 文心蘭癒傷組織不同醣類再生試驗……………………………………..27
(七) 文心蘭葉片花青素含量分析……………………………………………..27
(八) 文心蘭直接誘導體胚……………………………………………………..28
(九) 文心蘭基因轉殖流程…..…………………………………………………28
肆、結果
一、阿拉伯芥ein3突變株功能互補分析…………………………………….30
二、文心蘭癒傷組織與體胚再生………………………….…………………..43
(一) 文心蘭誘導癒傷組織………………….…………………...……………..43
(二) 文心蘭直接誘導體胚…………………………………….……………….43
三、文心蘭醣類再生試驗……………………………..……………………….48
四、文心蘭農桿菌媒介基因轉殖………………………………………………69
(一) 轉殖結果…………………………………………………………………..69
(二) 農桿菌誘導文心蘭癒傷組織發生PCD (Program Cell Death) 反應……69
(三) 文心蘭葉片轉殖結果……………………………………………………..69
伍、討論…………………………………………………………………………83
一、文心蘭OgEIN3之基因功能分析……………………………...................83
二、不同醣類對文心蘭癒傷組織再生之影響………………………………..83
三、文心蘭轉殖OgEIN3基因默化質體之研究………………………………85
(一) 影響文心蘭農桿菌轉殖效率因素之探討………………………………..85
四、未來研究方向………………………………………………………………87
陸、參考文獻……………………………………………………………………88












圖目錄
圖一、轉殖用之構築質體 pGOEIN3i、pGOEIN3-Red10、pGKUa-OgEIN3s及pUOEIN3i-gfp…………………………………………….……………16
圖二、質體pGKUa-OgEIN3s構築流程………………………………………17
圖三、質體pGOEIN3i-Red10構築流程………………………………………..19
圖四、質體pUOEIN3i-gfp構築流程…………………………………………..20
圖五、阿拉伯芥ein3 突變株互補測試GUS活性染色 …………………….32
圖六、阿拉伯芥ein3 突變株互補測試外表型觀察………………………….33
圖七、阿拉伯芥 ein3 突變株轉殖文心蘭 EIN3大量表現質體之南方氏雜交分析………………………………………………………………………..35
圖八、阿拉伯芥突變株ein3轉殖OgEIN3大量表現質體之基因拷貝數…………………………………………………………………………..36
圖九、 阿拉伯芥野生型、ein3突變株與轉殖35S:OgEIN3之ein3突變株在1/2 MS培養基之全株長、根長與莖長分析…………….………………37
圖十、阿拉伯芥野生型、ein3突變株與轉殖35S:OgEIN3之ein3突變株在1/2 MS + 10 μM ACC培養基之全株長、根長與莖長分析 ………………..38
圖十一、阿拉伯芥野生型、ein3突變株與轉殖35S:OgEIN3之ein3突變株在1/2 MS + 50 μM ACC 培養基之全株長、根長與莖長分析……….......39
圖十二、阿拉伯芥野生型、ein3突變株與轉殖35S:OgEIN3之ein3突變株生長在1/2 MS 培養基之鮮重、澎潤重與乾重分析……………..………40
圖十三、阿拉伯芥野生型、ein3突變株與轉殖35S:OgEIN3之ein3突變株生長在1/2 MS +10 μM ACC 培養基之鮮重、澎潤重與乾重分析………41
圖十四、阿拉伯芥野生型、ein3突變株與轉殖35S:OgEIN3之ein3突變株生長在1/2 MS 培養基之葉綠素與胡蘿蔔素含量分………………...……42
圖十五、阿拉伯芥野生型、ein3突變株與轉殖35S:OgEIN3之ein3突變株生長在1/2 MS + 10 μM ACC 培養基之葉綠素與胡蘿蔔素含量分析………………………………………………………………………..…44
圖十六、文心蘭 Oncidium Gower Ramsey 癒傷組織誘導與再生情形…….45
圖十七、文心蘭Oncidium Gower Ramsey葉片直接誘導體胚培養…………47
圖十八、不同醣類組合對文心蘭 癒傷組織植株增殖之影響 ………………57
圖十九、不同醣類組合 (蔗糖和麥芽糖) 對文心蘭癒傷組織再生一個月之影響…………………………………………………………………………..59
圖二十、不同醣類組合 (蔗糖和海藻糖) 對文心蘭癒傷組織再生一個月之影響…………………………………………………………………………..60
圖二十一、不同醣類組合 (麥芽糖和海藻糖) 對文心蘭癒傷組織再生一個月之影響……………………………………………………………………..61
圖二十二、不同醣類組合 (蔗糖和麥芽糖) 對文心蘭癒傷組織再生兩個月之影響………………………………………………………………………..62
圖二十三、不同醣類組合 (蔗糖和海藻糖) 對文心蘭癒傷組織再生兩個月之影響…………………………………….………………………………….63
圖二十四、不同醣類組合 (麥芽糖和海藻糖) 對文心蘭癒傷組織再生兩個月之影響……………………………………………….…………………….64
圖二十五、不同醣類組合 (蔗糖和麥芽糖) 對文心蘭癒傷組織再生三個月之影響………………………………………………………………….…….65
圖二十六、不同醣類組合 (蔗糖和海藻糖) 對文心蘭癒傷組織再生三個月之影響……………………………………………….……………………….66
圖二十七、不同醣類組合 (麥芽糖和海藻糖) 對文心蘭癒傷組織再生之影響 …………………………………………………………………………67
圖二十八、不同醣類組合對文心蘭癒傷組織再生不同階段之影響 …………………………………………………………………………68
圖二十九、文心蘭轉殖pGOEIN3i癒傷組織在含抗生素之OS培養基篩選情形………………………………………………………………………….70
圖三十、文心蘭擬轉殖癒傷組織GUS活性組織化學染色結果 …………………………………………………………………………71
圖三十一、文心蘭南西 (Gower Ramsey) 經轉殖 pGOEIN3i 質體後具 G418 抗性之癒傷組織與擬原球莖體,(A) 擬轉殖癒傷組織、(B) 擬轉殖擬原球體………………………………………………………………………..72
圖三十二、文心蘭癒傷組織轉殖後再生情形………………………………..73
圖三十三、不同 pGOEIN3i 擬轉殖細胞系之生長情形。(A, B) 未轉殖細胞;(C, D) 具 G418 抗性細胞擬轉殖系……………………………..……...74
圖三十四、癒傷組織於篩選培養基中培養一個月後之情形。(A、B)一般正常篩選情形;(C、D)農桿菌過量生長情形…………………….….....75
圖三十五、不同 pGOEIN3i-Red10 擬轉殖細胞之 GFP與DsRed 螢光表現情形。(A)白光下, ( B) 綠色螢光下, (C) 紅色螢光下………………....76
圖三十六、文心蘭癒傷組織轉殖pGOEIN3i 擬轉殖株之再生 ……………77
圖三十七、農桿菌導致文心蘭癒傷組織DNA小片段的發生以及抑制小片段DNA的發生…………………………………………...………………….78
圖三十八、文心蘭葉片轉殖pGOEIN3i及pGOEIN3i-Red10在含抗生素之
1/2 MS + 3 mg/L TDZ培養基篩選情形………………………………….79
圖三十九、文心蘭轉殖葉片體胚GUS活性組織化學染色結果………….…80
圖四十、EIN3同源基因胺基酸序列之親緣性分析…………………….……81
dc.language.isozh-TW
dc.title文心蘭EIN3基因默化轉殖與功能互補試驗zh_TW
dc.titleStudies on Functional Complementation and Transgenic Silencing of Oncidium EIN3 geneen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.coadvisor杜宜殷(Yi-Yin Do)
dc.contributor.oralexamcommittee鄭隨和(Shui-Ho Cheng),劉祖惠(Tsu-Hwie Liu)
dc.subject.keyword花朵老化,乙烯訊息傳導,EIN3,基因默化,基因轉殖,zh_TW
dc.subject.keywordflower senescence,ethylene signal transduction,EIN3,RNAi,gene transformation,en
dc.relation.page95
dc.rights.note未授權
dc.date.accepted2010-08-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
5.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved