請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22210完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林依依 | |
| dc.contributor.author | Tze-Chieh Hsia | en |
| dc.contributor.author | 夏子傑 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:13:49Z | - |
| dc.date.copyright | 2011-08-22 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-18 | |
| dc.identifier.citation | Bender, M. A., I. Ginis, 2000 : Real-Case Simulations of Hurricane–Ocean Interaction Using A High-Resolution Coupled Model: Effects on Hurricane Intensity. Mon. Wea. Rev., 128, 917–946.
Bender, M. A., T. R. Knutson, R. E. Tuleya, J.J. Sirutis, G. A. Vecchi, S. T. Garner, I. M. Held, 2010: Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science, 327, 5964, 454-458. Black, P. G., E. A. D'Asaro, W. M. Drennan, J. R. French, P. P. Niiler, T. B. Sanford, E. J. Terrill, E. Walsh, J. A. Zhang, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer Experiment. Bull. Amer. Meteor.Soc., 88, 357–374. Cione, J. J., and E. W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 1783–1796. Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665–669. Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686–688. Goni, G. J., and J. A. Trinanes, 2003: Ocean thermal structure monitoring could aid in the intensity forecast of tropical cyclones. Eos, Trans. Amer. Geophys. Union, 84, 573–580. Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 1093–1108. Kaplan, J., M. DeMaria, J. A. Knaff, 2010: A Revised Tropical Cyclone Rapid Intensification Index for the Atlantic and Eastern North Pacific Basins. Wea. Forecasting, 25, 220-241. Leipper, D., and D. Volgenau, 1972: Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr., 2, 218–224. Lin, I. I., C. C. Wu, K. A. Emanuel, I. H. Lee, C. R. Wu, I. F. Pun, 2005: The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133, 2635–2649. Lin, I. I., C. C. Wu, I. F. Pun, and D. S. Ko, 2008: Upper-ocean thermal structure and The western North Pacific category-5 typhoons. Part I: Ocean features and category-5 typhoon’s intensification. Mon. Wea. Rev., 136, 3288–3306. Lin, I. I., C. C. Wu, and I. F. Pun, 2009: Upper-ocean thermal structure and the western North Pacific Category 5 Typhoons. Part II: Dependence on translation speed. Mon. Wea. Rev.,137,3744-3757. Mellor, G. L., T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851-875. Powell, M. D., P. J. Vickery, T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279–283. Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153–175. Price, J. F., T. B. Sanford, G. Z. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys.Oceanogr., 24, 233–260. Pun, I. F., I. I. Lin, C. R. Wu, D. S. Ko, and W. T. Liu, 2007: Validation and application of altimetry-derived upper ocean thermal structure in the western North Pacific Ocean for typhoon intensity forecast. IEEE Trans. Geosci. Remote Sens., 45 (6), 1616–1630. Qiu, B., 1999: Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/Poseidon observations and theory. J. Phys. Oceanogr., 29, 1670–1685. Shay, L. K., G. J. Goni, P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 1366–1383. Wang, Y., C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes - A review. Meteor. Atmos. Phys., 87, 257-278. Webster, P. J., G. J. Holland, J. A. Curry, H. -R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 5742, 1844–1846. Wu, C.-C., C.-Y Lee, and I-I Lin, 2007: The effect of the ocean eddy on tropical cyclone intensity. J. Atmos. Sci., 64, 3562-3578. Yablonsky, R. M., I. Ginis, 2008: Improving the ocean initialization of coupled hurricane–ocean models using feature-based data assimilation. Wea. Rev., 136, 2592–2670. Zeng, Z., Y. Wang, and C-C. Wu, 2007: Environmental dynamical control of tropical cyclone intensity—An observational study. Mon. Wea. Rev., 135, 38–59. 王鳳琴,2006 : 利用衛星估算海氣通量及其與颱風強度的關係,國立台灣大學大氣科學研究所碩士論文,71p。 宋紹良,2010 : 上層海洋熱力結構對颱風強度變化之影響—海氣耦合模式實驗研究,國立台灣大學大氣科學研究所碩士論文,87p。 楊朝淵,2010 : 西北太平洋超級颱風快速增強現象之原因探討,國立台灣大學大氣科學研究所碩士論文,95p。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22210 | - |
| dc.description.abstract | 為了改進颱風警報系統,我們應該加強對於颱風路徑及強度的預報。相較於近30年內蓬勃發展的颱風路徑預報,強風強度預報仍有很大進步的空間,影響著颱風強度變化有主要三個因素,綜觀大氣條件、颱風本身結構、海洋條件,其中特別是海洋的條件在颱風強度變化之中的角色,還沒有被仔細研究了解。
在西北太平洋,由於充滿著海洋性渦旋區域的存在,造成了複雜的次表面海洋條件。海洋性渦旋可以造成上層海水熱含量達到100%的變異。複雜的海洋結構對颱風強度的變化有很深的影響。過去的研究大多對於海洋性暖渦對於颱風強度的影響,但在充滿海洋性渦旋的區域,也有暖水層較氣候值薄的海洋性冷渦的存在,本研究針對海洋性冷渦和颱風強度變化之間的交互作用做深入研究。以2007年超級颱風Sepat遭遇海洋性冷渦為例,遭遇冷渦之後其強度一天內近中心風速下降35 knot。 本研究對2007年至2009年西北太平洋的颱風遭遇海洋性冷渦個案進行分析,發現2007至2009年強烈颱風經過海洋性冷渦時平均一天強度下降25 knot。利用測高衛星與海洋實測浮標觀察海洋性冷渦,並且運用了一維海洋混合層模式模擬颱風造成的海洋表面冷卻,並計算冷卻之後的熱焓通量以及檢驗綜觀大氣環境條件,進一步的去了解海洋性冷渦在颱風強度變化中所扮演的角色。 研究中發現颱風遭遇海洋性冷渦造成的影響是根據遭遇冷渦時颱風的強度所主導,由於越強的颱風有越大的風速造成強烈的海洋表面溫度冷卻作用,而越強的颱風又需要更多的焓通量維持其強度,因此海洋性冷渦對於越強的颱風導致其強度有明顯的強度減弱的作用。 | zh_TW |
| dc.description.abstract | For improving the typhoon warning system, we should improve the track and intensity forecasting. In the recent three decades, it had been well studied in track forecasting related to intensity forecasting. There are three important factors in tropical cyclone intensity evolution, including atmospheric synoptic condition, cyclone's own structure and oceanic condition. Especially, the role of oceanic condition in typhoon intensity evolution is not well understood.
There is a complicated oceanic subsurface in the western North Pacific ocean, because of the eddy rich zone. The oceanic eddy could let the upper ocean heat content have 100% anomaly. It deeply influences the intensity of typhoon. There were a lot of researches about the impacts of WOEs (warm oceanic eddy) on typhoon intensity evolution. In the eddy rich zone, there also exists SSHA (sea surface height anomaly) negative feature of COEs (cold oceanic eddy). This study focused on the interaction of COEs on typhoon intensity evolution. For example, 2007 category 5 typhoon Sepat dropped 35 knots in one day after encountered a COE. This study included the cases of 2007-2009 typhoon encountered COEs. It is found that there is an average of 25 knot intensity decay in one day when Category 4-5 typhoons encountering COEs. By the multiple altimetry satellite and oceanic float, we had good observations on COEs. One dimensional oceanic mixed layer model is used for simulating typhoon-induced SST cooling. This study examined the synoptic atmospheric condition and calculated enthalpy flux between the typhoons and COEs, then trying to understand the role of COEs in different intense typhoon and the impacts of COEs on typhoon intensity evolution. It is found that the impacts of typhoon encountered COEs depends on the encountered typhoon intensity, because the more intense typhoon has the bigger wind speed on inducing SST more cooling. The more intense typhoon needs more enthalpy flux for intensity maintenance. So that COEs make the more intense typhoon’s intensity decay. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:13:49Z (GMT). No. of bitstreams: 1 ntu-100-R98229017-1.pdf: 19831981 bytes, checksum: 5a12d1fd1ab1a9679e90aa008197ca6d (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii ABSTRACT iii 目錄 iv 表目錄 v 圖目錄 vi 第一章 前言 1 1.1 研究背景 1 1.2 研究動機與目的 5 第二章 研究工具與研究方法 7 2.1 資料簡介 7 2.2 模式介紹 9 2.3 方法介紹 11 第三章 研究結果 14 3.1 海洋的前置條件 14 3.2 上層海洋熱力結構變化與焓通量 15 3.3 個案分析 16 3.3.1 Category 4-5的颱風於強度極值遭遇冷渦 16 3.3.2 Category 4-5的颱風於增強中遭遇冷渦 20 3.3.3 Category 1的颱風遭遇海洋性冷渦 22 3.4 檢驗綜觀大氣環境條件 23 3.4.1 Category 4-5的颱風於強度極值遭遇冷渦時的綜觀大氣環境條件 23 3.4.2 Category 4-5的颱風於增強中遭遇冷渦時的綜觀大氣環境條件 24 3.4.3 Category 1的颱風遭遇海洋性冷渦時的綜觀大氣環境條件 24 3.5 討論 25 第四章 總結及後續研究方向 28 參考文獻 31 附表 35 附圖 45 | |
| dc.language.iso | zh-TW | |
| dc.subject | 西北太平洋 | zh_TW |
| dc.subject | 颱風強度 | zh_TW |
| dc.subject | 海洋性冷渦 | zh_TW |
| dc.subject | 颱風導致海洋表面溫度冷卻 | zh_TW |
| dc.subject | 海氣交互作用 | zh_TW |
| dc.subject | Air-sea Interaction | en |
| dc.subject | Western North Pacific Ocean | en |
| dc.subject | Typhoon Intensity | en |
| dc.subject | Cold Oceanic Eddy | en |
| dc.subject | Typhoon-induced SST cooling | en |
| dc.title | 西北太平洋海洋性冷渦對颱風強度變化的影響 | zh_TW |
| dc.title | The Impact of Cold Oceanic Eddies on Typhoon Intensity Evolution in the Western North Pacific Ocean | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳俊傑,唐存勇 | |
| dc.subject.keyword | 颱風強度,海洋性冷渦,颱風導致海洋表面溫度冷卻,海氣交互作用,西北太平洋, | zh_TW |
| dc.subject.keyword | Typhoon Intensity,Cold Oceanic Eddy,Typhoon-induced SST cooling,Air-sea Interaction,Western North Pacific Ocean, | en |
| dc.relation.page | 93 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-08-18 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 19.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
