請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22199
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡定平(Din-Ping Tsai) | |
dc.contributor.author | Zhong Hao Lu | en |
dc.contributor.author | 呂中豪 | zh_TW |
dc.date.accessioned | 2021-06-08T04:13:41Z | - |
dc.date.copyright | 2011-08-22 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-18 | |
dc.identifier.citation | [1 1]網路文獻Laser micromaching (Resonetics company.) http://fab.cba.mit.edu/content/tools/machines/resonetics_excimer_laser/manual/micromachining%20seminar.pdf
[1 2] J. Bohandy, B. F. Kim, and F. J. Adrian, 'Metal deposition from a supported metal film using an excimer laser,' Journal of Applied Physics 60 (4), 1538-1539 (1986). [1 3] C. B. Arnold, P. Serra, and A. Pique, 'Laser direct-write techniques for printing of complex materials,' MRS Bull. 32 (1), 23-31 (2007). [1 4] A. Pique, D. B. Chrisey, R. C. Y. Auyeung et al., 'A novel laser transfer process for direct writing of electronic and sensor materials,' Applied Physics a-Materials Science & Processing 69, S279-S284 (1999). [1 5] D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, 'Nanodroplets deposited in microarrays by femtosecond Ti : sapphire laser-induced forward transfer,' Applied Physics Letters 89 (2006). [1 6] D. P. Banks, C. Grivas, I. Zergioti, and R. W. Eason, 'Ballistic laser-assisted solid transfer (BLAST) from a thin film precursor,' Optics Express 16, 3249-3254 (2008). [1 7] A. Klini, P. A. Loukakos, D. Gray, A. Manousaki, and C. Fotakis, 'Laser Induced Forward Transfer of metals by temporally shaped femtosecond laser pulses,' Optics Express 16, 11300-11309 (2008). [1-8] A. I. Kuznetsov, J. Koch, and B. N. Chichkov, 'Laser-induced backward transfer of gold nanodroplets,' Optics Express 17, 18820-18825 (2009). [1 9] Li Yang, Ching-yue Wang, Xiao-chang Ni, Zhi-junWang, Wei Jia, and Lu Chai, “Microdroplet deposition of copper film by femptosecond laser-induced forward transfer,” Applied Physics Letters. 89, 161110-3 (2006). [1 10] D. A. Willis, and V. Grosu, 'Microdroplet deposition by laser-induced forward transfer,' Applied Physics Letters 86 (2005). [1 11] I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, 'Microdeposition of metal and oxide structures using ultrashort laser pulses,' Applied Physics a-Materials Science & Processing 66, 579-582 (1998). [1 12] G. Koundourakis, C. Rockstuhl, D. Papazoglou, A. Klini, I. Zergioti, N. A. Vainos, and C. Fotakis, 'Laser printing of active optical microstructures,' Applied Physics Letters 78, 868-870 (2001). [1 13] H. Sakata, S. Chakraborty, E. Yokoyama, M. Wakaki, and D. Chakravorty, 'Laser-induced forward transfer of TiO2-Au nanocomposite films for maskless patterning,' Applied Physics Letters 86, 3 (2005). [1 14] S. Chakraborty, H. Sakata, E. Yokoyama, M. Wakaki, and D. Chakravorty, 'Laser-induced forward transfer technique for maskless patterning of amorphous V2O5 thin film,' Applied Surface Science 254, 638-643 (2007). [1 15] D. B. Chrisey, A. Pique, R. A. McGill, J. S. Horwitz, B. R. Ringeisen, D. M. Bubb, and P. K. Wu, 'Laser deposition of polymer and biomaterial films,' Chem. Rev. 103, 553-576 (2003). [1 16] P. Serra, M. Colina, J. M. Fernandez-Pradas, L. Sevilla, and J. L. Morenza, 'Preparation of functional DNA microarrays through laser-induced forward transfer,' Applied Physics Letters 85, 1639-1641 (2004). [1 17] I. Zergioti, A. Karaiskou, D. G. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, 'Time resolved schlieren study of sub-pecosecond and nanosecond laser transfer of biomaterials,' Applied Surface Science 247, 584-589 (2005). [1 18] V. Dinca, E. Kasotakis, J. Catherine, A. Mourka, A. Mitraki, A. Popescu, M. Dinescu, M. Farsari, and C. Fotakis, 'Development of peptide-based patterns by laser transfer,' Applied Surface Science 254, 1160-1163 (2007). [1 19] E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, 'Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films,' Journal of Applied Physics 66, 457-459 (1989). [1 20] Z. Toth, and T. Szorenyi, 'Pulsed laser processing of Ge/Se thin film strucutre,' Applied Physics a-Materials Science & Processing 52, 273-279 (1991). [1 21] A. Pique, D. B. Chrisey, R. C. Y. Auyeung et al., 'A novel laser transfer process for direct writing of electronic and sensor materials,' Applied Physics a-Materials Science & Processing 69, S279-S284 (1999). [1 22] H. Kim, G. P. Kushto, C. B. Arnold et al., 'Laser processing of nanocrystalline TiO2 films for dye-sensitized solar cells,' Applied Physics Letters 85 (3), 464-466 (2004). [1 23] S. K. Chang-Jian, J. R. Ho, J. W. J. Cheng, and C. K. Sung, 'Fabrication of carbon nanotube field emission cathodes in patterns by a laser transfer method,' Nanotechnology 17, 1184-1187 (2006). [1 24] R. Fardel, M. Nagel, F. Nuesch, T. Lippert, and A. Wokaun, 'Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,' Applied Physics Letters 91 (2007). [1 25] A. I. Kuznetsov, A. B. Evlyukhin, C. Reinhardt et al., 'Laser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applications,' Journal of the Optical Society of America B-Optical Physics 26 (12), B130-B138 (2009). [1 26] D. S. Ivanov, Z. B. Lin, B. Rethfeld et al., 'Nanocrystalline structure of nanobump generated by localized photoexcitation of metal film,' Journal of Applied Physics 107 (1) (2010). [1 27] D.A.Willis a! and V. Grosu ., “Microdroplet deposition by laser-induced forward transfer” Applied Physics Letters, 86, 244103 (2005) [1 28] 邱國斌、蔡定平「金屬表面電漿簡介」,物理雙月刊,第廿八卷第二期,472-485頁(2006)。 [1 29] Textbook: Stefan A. Maier, “Plasmonics: Fundamentals and Applications ” Springer, Ch1- Ch2. [2 1] E. Plum, V. A. Fedotov, A. S. Schwanecke et al., 'Giant optical gyrotropy due to electromagnetic coupling,' Applied Physics Letters. 90 (22) (2007) [4 1] Na Liu , H.C. Guo , L.W. Fu, “Three-dimensional photonic metamaterials at optical frequencies” Nature Materials .VOL 7. (2008) [4 2] Na Liu ,S. Kaiser and H. Giessen, “Magnetoinductive and electroninductive coupling in plasmonic metamaterial molecules.” Adv. Materials. (2008) [4-3] N. Liu, L.W. Fu, “Plasmonic Building Blocks for Magnetic Molecules in Three-Dimensional Optical Metamaterials” Adv. Materials. 20, 3859–3865 (2008) [4-4] N. Liu and H. Giessen, “Three-dimensional optical metamaterials as model systems for longitudinal and transverse magnetic coupling”Optics Express. Vol. 16, No. 26 (2008) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22199 | - |
dc.description.abstract | 質量轉移技術(LIFT)是個簡單又快速的技術,利用電腦操控飛秒雷射移除在透明基板上的母板材料(母板),因此材料轉印至另一塊基板上(子板)。金和介電質夾雜和氧族材料的動力犧牲層構成的多層薄膜,利用質量轉移技術做出多層結構。當雷射光照射後,動力犧牲層產生爆炸性的壓力驅使材料轉印至子板。
利用質量轉移技術已經可以做出完整的五層結構。此法將有潛力製作大量地三維多層超穎材料和電漿子學的應用在任何基板上。 | zh_TW |
dc.description.abstract | Laser-induced forward transfer (LIFT) is a simple fast one-step process technology, which utilizes short laser pulse to selectively remove the thin film (donor) material from a transparent support substrate and eventually forward transfer it onto a receiver substrate. We utilize LIFT to print the pattern of multi-layer thin film consisted of stacked gold and dielectric material and chalcogenide material dynamic release layer on glass substrate.
The manufacture of three layers pattern by LIFT technique has been demonstrated. The proposed method has potential for manufacturing a large number of three-dimension structure on any substrate in metamaterails or other plasmonic applications faster and easier. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T04:13:41Z (GMT). No. of bitstreams: 1 ntu-100-R98245007-1.pdf: 9404401 bytes, checksum: 8eba4d7537fd0a00451de17c4c4dd865 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 目錄
Multi-layer pattern manufactured by femto-second laser-induced forward transfer technique I 口試委員會審定書 II 致謝 III 中文摘要 IV 英文摘要 V 目錄 圖目錄 表目錄 第一章、 奈米光學與元件加工簡介 1 1.1論文動機與目的 1 1.2雷射直寫式微影技術 3 (Laser direct-writing technology) 3 1.3-雷射推進質量轉 6 (Laser-induced forward transfer) 6 1.3-2雷射推進質量轉移技術種類 7 1.3-3雷射推進質量轉移技術之應用與文獻回顧 8 1.4-1光子學與奈米光子學 13 1.4-2電漿子學(Plasmonics) 14 1.5奈米元件製作技術簡介 27 常見微影術:電子束微影與聚焦離子束微影 28 1.6參考文獻 30 第二章、實驗架構與製作流程 36 2.1濺鍍製膜系統 37 2.1-1儀器介紹與原理 37 2.1-2膜層製備 39 2.2雷射光學系統(Laser and Optical system) 40 2.2-1實驗架構 40 2.2-2儀器介紹 42 2.3-1圖形(Patterning)座標化 57 2.3-2程式參數設定 58 2.3-3雷射光斑聚焦高度修正補償 59 2.3-4雷射系統模式(Laser system mode) 61 2.4樣品光譜量測 64 傅立葉轉換光譜儀原理 64 量測過程 66 2.5參考文獻 67 第三章、實驗結果與分析討論 68 3.1光學系統對雷射功率衰減之量測 68 第四章、實驗結果和分析 73 4.1 多層SRR(Split Resonator Ring)結構 73 4.1-1 動機目的 73 4.1-2膜層設計 74 4.1-3實驗結果:多層SRR環 75 4.2 多層漁網結構 82 4.2-1 動機目的 82 4.2-2膜層設計 83 4.2-3實驗結果:多層漁網結構 84 4.3 奈米多層格子轉印 87 4.3-1 動機目的 87 4.3-2膜層設計 88 4.3-3實驗結果:多層格子 89 4.3參考文獻 93 第五章、結論 94 | |
dc.language.iso | zh-TW | |
dc.title | 超快雷射製作多層結構之質量轉移轉印技術 | zh_TW |
dc.title | Multi-layer pattern manufactured by femto-second laser-induced forward transfer technique | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 果尚志(Shang-jr Gwo),藍永強(Yung-Chang Lan),劉如熹(Ru-Shi Liu),胡淑芬(Shu-Fan Hu) | |
dc.subject.keyword | 質量轉移技術,電漿子,超穎材料, | zh_TW |
dc.subject.keyword | LIFT,Plasmonics,Metamaterials, | en |
dc.relation.page | 94 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2011-08-18 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 應用物理所 | zh_TW |
顯示於系所單位: | 應用物理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 9.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。