請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22197完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林唯芳(Wei-Fang Su) | |
| dc.contributor.author | Chien-Chih Lin | en |
| dc.contributor.author | 林建志 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:13:40Z | - |
| dc.date.copyright | 2010-08-16 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-15 | |
| dc.identifier.citation | 1. Abacha N., Kubouchi M., Tsuda K. and Saika T., “Preparation and performance under corrosive environment of epoxy-nanocomposite”, 2007, Key Eng. Mater., 353, 2167-2170.
2. Agag T., Koga T. and Takeichi T., “Studies on thermal and mechanical properties of polyimide±clay nanocomposites”, 2001, Polymer, 42, 3399-3408. 3. Ahmad Z. and Mark J. E., “Polyimide−Ceramic Hybrid Composites by the Sol−Gel Route”, 2001, Chem. Mater., 13, 3320-3330. 4. Amerio E., Fabbri P., Malucelli G., Messori M., Sangermano M. and Taurino R., “Scratch resistance of nano-silica reinforced acrylic coatings”, 2008, Prog. Org. Coat., 62(2), 129-133. 5. Amerio E., Malucelli G., Sangermano M. and Priola A., “Nanotructured hybrid materials obtained by UV curing and sol-gel process involving alkoxysilane groups”, 2009, Epolmers, 059. 6. Alam J., Riaz U., Ashraf S. M. and Ahmad S., “Corrosion-protective performance of nano polyaniline/ferrite dispersed alkyd coatings”, 2008, J. Coat. Technol. Res., 5(1), 123-128. 7. Barus S., Zanetti M., Lazzari M. and Costa L., “Preparation of polymer hybrid nanocomposites based on PE and nanosilica”, 2009, Polymer, 50, 2595-2600. 8. Becker C., Mueller P. and Schmidt H., “Optical and thermomechanical investigations on thermoplastic nanocomposites with surface modified silica nanoparticles”, 1998, SPIE, 3469, 88-98. 9. Beecroft L. L., Johnen, N. A. and Ober, C. K., “Covalently Linked, Transparent Silica–Poly(imide) Hybrids”, 1997, Polym. Adv. Technol., 8, 289-296. 10. Bellucci F., Khamis I., Senturia S. D. and Latanision R. M., “Moisture Effects on the Electrical Conductivity of Kapton Polyimide”, 1990, J. Electrochem. Soc., 137, 1778-1784. 11. Bogoslovov R. B., Roland C. M., Ellis A. R., Randall A. M. and Robertson C. G., “Effect of silica nanoparticles on the local segmental dynamics in poly(vinyl acetate), 2008, Macromol., 41, 1289-1296. 12. Brinker C. J. and Scherer G. W., “Sol-gel science: the physics and chemistry of sol-gel processing”, 1990, Boston: Academic press. 13. Buryachenko V. A., Roy A., Lafdi K., Anderson K. L. and Chellapilla S., “Multi-scale mechanics of nanocomposites including interface: Experimental and numerical investigation”, 2005, Compos. Sci. Technol., 65, 2435-2465. 14. Buxton G. A. and Balazs A. C., “Simulating the morphology and mechanical properties of filled diblock copolymers”, 2003, Phys. Rev. E, 67, 0318021-0318012. 15. Capozzi C. J., Li Z., Samuels R. J. and Gerhardt R. A., “Impedance spectroscopy and optical characterization of polymethyl methacrylate / indium tin oxide nanocomposites with three-dimensional Voronoi microstructures”, 2008, J. Appl. Phys., 104, 114902. 16. Chang K-H, “Fabrication of high refractive index organic / inorganic nanocomposite via surface modification and dispersion technique”, 2006, Master degree thesis. 17. Chang M-H, Hsieh T-E, Huang B-R, Hsieh H-E, Juang F-S, Tsai Y-S, Liu M-O and Lin J-L., “A study of ultraviolet-curable organic/inorganic hybrid nanocomposites and their encapsulating applications for organic light-emitting diodes”, 2009, Mater. Chem. Phys., 115(2-3) 541-546. 18. Chau J. L. H., Lin Y. M., Li A. K., Su W. F., Chang K. S., Hsu S. L. C. and Li T. L., “Transparent high refractive index nanocomposite thin films”, 2007, Mater. Lett., 61(14), 2908-2910. 19. Chen C-M, Chung M-H, Hsieh T-E, Liu M-O, Lin J-L, Chu W-P, Tang R-M, Tsai Y-S and Juang F-S., “Synthesis, thermal characterization, and gas barrier properties of UV curable organic/inorganic hybrid nanocomposites with metal alloys and their application for encapsulation of organic solar cells”, 2009, Compos. Sci. Technol., 68(14), 3041-3046. 20. Chen M-H, Chen C-R, Hsu S-H and Su W-F, “Low shrinkage light curable nanocomposite for dental restorative material”, 2006, Dent. Mater., 22(2), 138-145. 21. Chen Y. and Iroh J. O., “Synthesis and Characterization of Polyimide/Silica Hybrid Composites”, 1999, Chem. Mater., 11, 1218-1222. 22. Chen Y., Zhou S., Yang H. and Wu L., “Structure and properties of polyurethane/nanosilica composites”, 2005, J. Appl. Polym. Sci., 95, 1032-1039. 23. Cheng C-C, Chien C-H, Yen Y-C, Ye Y-S, Ko F-H, Lin C-H and Chang F-C., “A new organic/inorganic electroluminescent material with a silsesquioxane core”, 2009, Acta Materialia, 57(6)1938-1946. 24. Chemtob A., Croutxe-Barghorn C., Soppera O. and Rigolet S., “Cationic photopolymerization in presence of functionalized silica nanoparticles”, 2009, Macromol. Chem. Phys., 210(13-14), 1127-1137. 25. Chou Y-C, Wang Y-Y and Hsieh T-E, “Transparent photo-curable co-polyacrylate/silica nanocomposites prepared by sol-gel process”, 2007, J. Appl. Polym. Sci., 105(4), 2073-2082. 26. Cornelius C. J. and Marand E., “Hybrid inorganic–organic materials based on a 6FDA–6FpDA–DABA polyimide and silica: physical characterization studies”, 2002, Polymer, 43, 2385-2400. 27. Delozier D. M., Orwoll R. A., Cahoon J. F., Ladislaw J. S., Smith J. G. Jr. and Connell J. W., “Polyimide nanocomposites prepared from high-temperature, reduced charge organoclays”, 2003, Polymer, 44, 2231-2241. 28. Deng Q., Hu Y., Moore R. B., McCormick C. L. and Mauritz K. A., “Nafion/ORMOSIL hybrids via in situ sol-gel reactions. 3. pyrene fluorescence probe investigations of nanoscale environment”, 1997, Chem. Mater. 9(1), 36-44. 29. Devaraju N. G. and Lee B. I., “Dielectric behavior of three phase polyimide percolative nanocomposites”, 2006, J. Appl. Polym. Sci., 99, 3018-3022. 30. Fischer-Cripps A. C., “Nanaindentation”, 2002, New York, Springer. 31. Fisher F. T. and Brinson L. C., “Viscoelastic interphases in polymer–matrix composites:theoretical models and finite-element analysis”, 2001, Compos. Sci. Technol., 61, 731-748. 32. Hajji P., David L., Gerard J. F., Pascault J. P. and Vigier G., “Synthesis, structure, and morphology of polymer-silica hybrid nanocomposites based on hydroxyethyl methacrylate”, 1999, J. Polym. Sci., B, Polym. Phys., 37(22), 3172-3187. 33. Harada M., Minamigawa S., Tachibana K. and Ochi M., “Flame retardancy and thermomechanical properties of the poly-(glycidyloxypropyl) phenyl silsesquioxane/layered titanate nanocomposites”, 2007, J. Appl. Polym. Sci., 106, 338-344. 34. Harton S. E., Templeman C. G. and Vyletel B., “Percolation-driven multiscale roughening for superhydrophobic polymer nanocomposite coatings”, 2010, Macromol., 43, 3173-3176. 35. Hobbs J. K., “In-situ AFM of polymer crystallization”, 2003, Chin. J. Polym. Sci., 21, 135–140. 36. Holder E, Tessler N and Rogach A L., “Hybrid nanocomposite materials with organic and inorganic components for opto-electronic devices”, 2008, J. Mater. Chem., 18(10)1064-1078. 37. Hsiue G. H., Chen J. K. and Liu Y. L., “Synthesis and Characterization of Nanocomposite of Polyimide–Silica Hybrid from Nonaqueous Sol–Gel Process”, 2000, J. Appl. Polym. Sci., 76, 1609-1618. 38. Huang J-W, Wen Y-L, Kang C-C and Yeh M-Y, “Preparation of polyimide-silica nanocomposites from nanoscale colloidal silica”, 2007, Polym. J., 39(7), 654-658. 39. Huang Y. and Gu Y., “New Polyimide–Silica Organic–Inorganic Hybrids”, 2003, J. Appl. Polym. Sci., 88, 2210-2214. 40. Ivanov D. A. and Jonas A. M., “Isothermal growth and reorganization upon heating of a single poly(aryl-ether-ether-ketone) (PEEK) spherulite, as imaged by atomic force microscopy”, 1998, Macromol., 31, 4546-4550. 41. Jeon H. S., Rameshwaram J. K., G. Kim and D. H. Weinkauf, “Characterization of polyisoprene–clay nanocomposites prepared by solution blending”, 2003, Polymer, 44, 5749-5758. 42. Jethmalani J. M. and Ford W. T., “Diffraction of visible light by ordered monodisperse silica-poly(methyl acrylate) composite films”, 1996, Chem. Mater., 8(8), 2138-2146. 43. Jethmalani J. M., Ford W. T. and Beaucage G., “Crystal structure of monodisperse colloidal silica in poly(methyl acrylate) films”, 1997, Langmuir, 13(13), 3338-3344. 44. Jethmalani J. M., Sunkara H. B. and Ford W. T., “Optical diffraction from silica-poly(methyl methacrylate) composite films”, 1997, Langmuir, 13(10), 2633-2639. 45. Kashiwgai T., Morgan A. B., Antonucci J. M., VanLandingham M. R., Harris R. H., Awad W. H. and Shields J. R., “Thermal and flammability properties of a silica–poly(methylmethacrylate) nanocomposite”, 2003, J. Appl. Polym. Sci., 89, 2072-2078. 46. Kim J. H., Ko J. H. and Bae B. S., “Dispersion of silica nano-particles in sol-gel hybrid resins for fabrication of multi-scale hybrid nanocomposite”, 2007, J. Sol-Gel Sci. Technol., 41, 249-255. 47. Kim Y., Lee W. K., Cho W. J., Ha C. S., Ree M., and Chang T. “Morphology of Organic.Inorganic Hybrid Composites in Thin Films as Multichip Packaging Material”, 1997, Polym. Int., 43, 129-136. 48. Kioul, A. and Mascia L., “Compatibility of polyimide-silicate ceramers induced by alkoxysilane silane coupling agents”, 1994, J. Non-Cryst. Solids, 175, 169-186. 49. Kojima Y., Usuki A., Kawasumi M., Okada A., Fukushima Y., Kurauchi T. and Kamigaito O., “Mechanical properties of nylon 6-clay hybrid”, 1993, J. Mater. Res., 8(5), 1185-1189. 50. Kojima Y., Usuki A., Kawasumi M., Okada A., Kurauchi T. and Kamigaito O., “One-pot synthesis of nylon 6-clay hybrid”, 1993, J. polym. sci., A, Polym. chem., 31(7), 1755-1758. 51. Kojima Y., Usuki A., Kawasumi M., Okada A., Kurauchi T. and Kamigaito O., “Sorption of water in nylon 6-clay hybrid”, 1993, J. Appl. Polym. Sci., 49(7), 1259-1264. 52. Lai M. C., Chang K. C., Yeh J. M., Liou S. J., Hsieh M. F. and Chang H. S., “Advanced environmentally friendly anticorrosive materials prepared from water-based polyacrylate/Na+-MMT clay nanocomposite latexes”, 2007, Eur. Polym. J., 43(10), 4219-4228. 53. Lee C-Y, Huang Y-T, Su W-F and Lin C-F, “Electroluminescence from ZnO nanoparticles/organic nanocomposites”, 2006, Appl. Phys. Lett., 89, 231116-1 - 231116-3. 54. Lee H-H, Chou K-S and Shih Z-W, “Effect of nano-sized silver particles on the resistivity of polymeric conductive adhesives”, 2005, Int. J. Adhes. Adhes, 25(5), 437-441. 55. Lee L-H and Chen W-C, “High refractive index thin films prepared from trialkoxysilane capped poly(methylmethacrylate) titania materials”, 2001, Chem. Mater., 13(3), 1137-1142. 56. Lee P-I and Hsu L-C, “Preparation and properties of polybenzoxazole–silica nanocomposites via sol–gel process”, 2007, Eur. Polym. J., 43, 294-299. 57. Li C. and Chou T. W., “Multiscale modeling of compressive behavior of carbon nanotube/polymer composites”, 2006, Compos. Sci. Technol., 66, 2409-2414. 58. Lin C-C, Chang K-H, Lin K-C and Su W-F., “In situ probe nanophase transition in nanocomposite using thermal AFM”, 2009, Compos. Sci. Technol., 69, 1180-1186. 59. Lin L-H, Liu H-J and Yu N-K, “Morphology and thermal properties of poly(L-lactic acid)/organoclay nanocomposites”, 2007, J. Appl. Polym. Sci., 106, 260-266. 60. Lin Y. Y., Chen C. W., Chu T. H., Su W. F., Lin C. C., Ku C. H., Wu J. J., Chen C. H., “Nanostructured metal oxide/conjugated polymer hybrid solar cells by low temperature solution processes”, 2007, J. Mater. Chem., 17(43), 4571-4576. 61. Liu C-Y, Holman Z. C. and Kortshagen U. R., “Hybrid solar cells from P3HT and silicon nanocrystals”, 2009, Nano Lett., 9(1), 449-452. 62. Liu Q-P, Gao L-X, Gao Z-W and Yang L., “Preparation and characterization of polyimide/silica nanocomposite spheres”, 2007, Mater. Lett., 61, 4456-4458. 63. Loy D. A. and Shea K. J., “Bridged polysilsesquioxanes. High porous hybrid organic-inorganic materials”, 1995, Chem. Rev., 95(5), 1431-1442. 64. Magaraphan R., Lilayuthalert W., Sirivat A. and Schwank J. W., “Preparation, structure, properties and thermal behavior of rigid-rod polyimide / montmorillonite nanocomposites”, 2001, Compos. Sci. Technol., 61, 1253-1264. 65. Mahmoud W. E., “A novel photodiode made of hybrid organic/inorganic nanocomposite”, 2009, J. Phys. D, 42(15) 155502. 66. Malitson I. H., “Interspecimen comparison of refractive index of fused silica”, 1965, J. Opt. Soc. Am., 55(10P1), 1205-1208. 67. McMaster T. J., Hobbs J. K., Barham P. J. and Miles M. J., “AFM study of in situ real time polymer crystallization and spherulite structure”, 1997, Probe Microscopy, 1, 43-56. 68. Naganuma T. and Kagawa Y., “Effect of particle size on the optically transparent nano meter-order glass particle-dispersed epoxy matrix composites”, 2002, Compos. Sci. Technol., 62(9),1187-1189. 69. Nah C., Han S. H., Lee J-H, Lim S. D. and Rhee J. M., “Intercalation behavior of polyimide/organoclay nanocomposites during thermal imidization”, 2004, Compos. Part B Eng., 35(2), 125-131. 70. Nair A., White R. L., “Effect of inorganic oxides on polymer binder burnout. I. poly(vinyl butyral)”, 1996, J. Appl. Polym. Sci., 60(11), 1901-1909. 71. Nakamura Y., Yamaguchi M., Okubo M. and Matsumoto T., “Effect of particle size on the fracture toughness of epoxy resin filled with spherical silica”, 1992, Polymer, 33(16), 3415-3426. 72. Nakamura Y., Yamaguchi M., Tanaka A. and Okubo M., “Thermal shock test of integrated circuit packages sealed with epoxy moulding compounds filled with spherical silica particles”, 1993, Polymer, 34(15), 3220-3224. 73. Nakayama N. and Hayashi T., “Preparation and characterization of TiO2 and polymer nanocomposite films with high refractive index”, 2007, J. Appl. Polym. Sci., 105(6), 3662-3672. 74. Ng C. B., Schadler L. S. and Siegel R. W., “Synthesis and mechanical properties of TiO2-epoxy nanocomposites”, 1999, NanoStruct. Mater., 12, 507-510. 75. Novak B. M., Auerbach D. and Verrier C., “Low-density, mutually interpenetrating organic-inorganic composite materials via supercritical drying techniques”, 1994, Chem. Mater. 6(3), 282-286. 76. Okamoto K. I., Tanihara N., Watanabe H., Tanaka K., Kita H., Nakamura A., Kusuki Y. and Nakagawa K., “Sorption and Diffusion of Water Vapor in Polyimide Films”, 1992, J. Polym. Sci., B, Polym. Phys., 30, 1223-1231. 77. Oliver W. C. and Phrr G. M., “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, 1992, J. Mater. Res., 7(6), 1564-1583. 78. Park C., Smith J. G. Jr., Connell J. W., Lowther S. E., Working D. C. and Siochi E. J., “Polyimide/silica hybrid-clay nanocomposites”, 2005, Polymer, 46, 9694-9701. 79. Paul D. R. and Bucknall C. B., “Polymer Blends vol. 1 and vol. 2”, New York, Wiley, 2000. 80. Perrin F. X., Nguyen V. and Vernet J. L., “Mechanical properties of polyacrylic titania hybrids microhardness studies”, 2002, Polymer, 43(23), 6159-6167. 81. Pluta M., Jeszka J. K. and Boiteux G., “Polylactide/montmorillonite nanocomposites:Structure, dielectric, viscoelastic and thermal properties”, 2007, Eur. Polym. J., 43, 2819-2835. 82. Qiu W., Luo Y., Chen F., Duo Y. and Tan H., “Morphology and size control of inorganic particles in polyimide hybrids by using SiO2-TiO2 mixed oxide”, 2003, Polymer, 44, 5821-5826. 83. Ree M., Chen K. J. and Kirby D. P., “Anisotropic properties of high-temperature polyimide thin films:Dielectric and thermal-expansion behaviors”, 1992, J. Appl. Phys., 72, 2014-2021. 84. Russ J. C., “The image processing handbook 3rd ed.”, 1999, Heideberg (Germany) / Boca Raton (FL), Springer-Verlag / CRC Press. 85. Saegusa T., “Organic-inorganic polymers hybrids”, 1995, Pure & Appl. Chem., 67(12), 1965-1970. 86. Sangermono M., Borlatto E., D’Herin Bytner F. D., Priola A. and Rizza G., “Photostabilization of cationic UV-cured coatings in the presence of nanoTiO2”, 2007, Prog. Org. Coat., 59(2), 122-125. 87. Sangermano M., Malucelli G., Amerio E., Priola A., Billi E. and Rizza G., “Photopolymerization of epoxy coatings containing silica nanoparticles”, 2005, Prog. Org. Coat., 54(2), 134-138. 88. Schmidt H., “New type of non-crystalline solids between inorganic and organic materials”,1985, J. Non-Cryst. Solids, 73, 681-691. 89. Schrotter J. C., Smaihi M. and Guizard C., “Polyimide-Siloxane Hybrid Materials: Influence of Coupling Agents Addition on Microstructure and Properties”, 1996, J. Appl. Polym. Sci., 61, 2137-2149. 90. Sedlakova Z., Plestil J., Baldrian J., Slouf M. and Holub P., “Polymer-clay nanocomposties prepared via in situ emulsion polymerization”, 2009, Polym. Bull., 63, 365-384. 91. Seo J., Cho K. Y. and Han H., “Dependence of water sorption in polyimides on the internal linkage in the diamine component”, 2001, Polym. Degradation Stab., 74, 133-137. 92. Shang X. Y., Zhu Z. K., Yin J. and Ma X. D., “Compatibility of Soluble Polyimide/Silica Hybrids Induced by a Coupling Agent”, 2002, Chem. Mater., 14, 71-77. 93. Soloukhin V. A., Posthumus W., Brokken-Zijp J. C. M., Loos J. and de With G., “Mechanical properties of silica-(meth) acrylate hybrid coatings on polycarbonate substrate”, 2002, Polymer, 43(23), 6169-6181. 94. Southward R. E., Thompson D. S., Thornton T. A., Thompson D. W. and St. Clair A. K., “Enhancement of Dimensional Stability in Soluble Fluorinated Polyimides via the in Situ Formation of Lanthanum(III)−Oxo−Polyimide Nanocomposites”, 1998, Chem. Mater., 10, 486-494. 95. Stevens MP, Polymer Chemistry: an introduction. 3rd ed. New York: Oxford University Press; 1999. 96. Stober W., Fink A. and Park S. H., “Controlled growth of monodisperse silica spheres in the micron size range”, 1968, J. Colloid Interface Sci., 26, 62-69. 97. Su W-F, Lee J-F, Chen M-Y and Ho R-M, “Bismuth titanate nanoparticles dispersed polyacrylates”, 2004, J. Mater. Res., 19(8), 2343-2348. 98. Sun Y., Zhang Z. and Wong C.P., “Influence of interphase and moisture on the dielectric spectroscopy of epoxy/silica composites”, 2005, Polymer, 46, 2297-2305. 99. Sunkara H. B., Jethmalani J. M. and Ford W. T., “Composite of colloidal crystals of silica in poly(methyl methacrylate)”, 1994, Chem. Mater., 6(4), 362-364. 100. Tang Q., Sun X., Li Q., Lin J. and Wu J., “Preparation and electrical conductivity of SiO2/polypyrrole nanocomposite”, 2009, J. Mater. Sci., 44, 849-854. 101. Thompson D. S., Thompson D. W. and Southward R. E., “Oxo-Metal-Polyimide Nanocomposites. 2. Enhancement of Thermal, Mechanical, and Chemical Properties in Soluble Hexafluoroisopropylidine-Based Polyimides via the in Situ Formation of Oxo-Lanthanide(III)-Polyimide Nanocomposites”, 2002, Chem. Mater., 14, 30-37. 102. Tyan H. L., Liu Y. C. and Wei K. H., “Thermally and mechanically enhanced clay/polyimide nanocomposite via reactive organoclay”, 1999, Chem. Mater., 11, 1942-1947. 103. Untereker D., Lyu S., Schley J., Martinez G. and Lohstreter L., “Maximum conductivity of packed nanoparticles and their polymer composites”, 2009, ACS Appl. Mater. Interfaces, 1(1), 97-101. 104. Usuki A., Kawasumi M., Kojima Y., Okada A., Kurauchi T. and Kamigaito O., “Swelling behavior of montmorillonite cation exchanged for ω-amino acids by ε-caprolactam”, 1993, J. Mater. Res., 8(5), 1174-1178. 105. Usuki A., Koiwai A., Kojima Y., Kawasumi M., Okada A., Kurauchi T. and Kamigaito O., “Interaction of nylon 6-clay surface and mechanical properties of nylon 6-clay hybrid”, 1995, J. Appl. Polym. Sci., 55(1), 119-123. 106. Vaia R. A. and Giannelis E. P., “Polymer Nanocomposites:status and opportunities”, 2001, MRS Bull., 26, 394-401. 107. Wan T., Lin J., Li. X. and Xiao W., “Preparation of epoxy-silica-acrylate hybrid coatings”, 2008, Polym. Bull., 59(6), 749-758. 108. Wang Y. W., Yen C. T. and Chen W. C., “Photosensitive polyimide/silica hybrid optical materials:Synthesis, properties, and patterning”, 2005, Polymer, 46, 6959-6967. 109. Wang Z., Liu J., Wu S., Wang W. and Zhang L., “Novel percolation phenomena and mechanism of strengthening elastomers by nanofillers”, 2010, Phys. Chem. Chem. Phys., 12, 3014-3030. 110. Wang Z. and Pinnavaia T. J., “Nanolayer reinforcement of elastomeric polyurethane”, 1998, Chem. Mater., 10, 3769-3771. 111. Wen J. and Wikes G. L., “Organic-inorganic hybrid network materials by the sol-gel approach”, 1996, Chem. Mater., 8, 1667-1681. 112. Xu K., Zhou S. X. and Wu L. M., “Effect of highly dispersible zirconia nanoparticles on the properties of UV-curable poly(urethane-acrylate) coatings”, 2009, J. Mater. Sci., 44(6), 1613-1621. 113. Yang F. and Nelson G. L., “PMMA/Silica Nanocomposite studies:synthesis and properties”, 2004, J. Appl. Polym. Sci., 91, 3844-3849. 114. Yasmin A. and Daniel I. M., “Mechanical and thermal properties of graphite platelet/epoxy composites”, 2004, Polymer, 45, 8211-8219. 115. Yen C. T., Chen W. C., Liaw D. J. and Lu H. Y., “Synthesis and properties of new polyimide–silica hybrid films through both intrachain and interchain bonding”, 2003, Polymer, 44, 7079-7087. 116. You J., Shi T., Liao Y., Li X., Su Z. and An L., “Temperature dependence of surface composition and morphology in polymer blend film”, 2008, Polymer, 49(20), 4456-4461. 117. Youngs I. J., “Exploring the universal nature of electrical percolation exponents by genetic algorithm fitting with general effective medium theory”, 2002, J. Phys. D: Appl. Phys., 35(23), 3127-3137. 118. Zeng T-W, Lin Y-Y, Lo H-H, Chen C-W, Chen C-H, Liou S-C, Huang H-H and Su W-F, “A large interconnecting network within hybrid MEH-PPV/TiO2 nanorod photovoltaic devices”, 2006, Nanotechnology, 17(21), 5387-5392. 119. Zhang M. Q., Rong M. Z. and Friedrich K., “Polymer nanocomposites as candidates for tribological applications”, 2007, Mater. Sci. Forum, 539, 842-847. 120. Zhang Y-H, Dang Z-M, Fu S-Y, Xin J. H., Deng J-G, Wu J., Yang S., Li L-F and Yan Q., “Dielectric and dynamic mechanical properties of polyimide-clay nanocomposite films”, 2005, Chem. Phys. Lett., 401, 553-557. 121. Zhou S., Wu L., Shen W. and Gu G., “Study on the morphology and tribological properties of acrylic based polyurethane/fumed silica composite coatings”, 2004, J. Mater. Sci., 39, 1593-1600. 122. Zhou S-X, Wu L-M, Sun J and Shen W-D, “Effect of nanosilica on the properties of polyester-based polyurethane”, 2003, J. Appl. Polym. Sci., 88, 189-193. 123. Zhu Z. K., Yin J., Cao F., Shang X. Y. and Lu Q. H., “Photosensitive Polyimide/Silica Hybrids”, 2000, Adv. Mater., 12, 1055-1057. 124. Zou H., Wu S. and Shen J., “Polymer/silica nanocomposites: preparation, characterization, properties, and application”, 2008, Chem. Rev., 108, 3893-3957. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22197 | - |
| dc.description.abstract | 本論文致力於高分子-二氧化矽奈米粒子製作奈米複材、物性與化性的研究,包含三個部份。第一部份為奈米相轉移的量測,第二部份為奈米粒子大小及高分子化學種類對奈米複材物性的影響,第三部份研發新穎的具超疏水及低水氣穿透性之奈米複材。我們發現當奈米複合材料中的奈米粒子濃度達到透路限度(percolation threshold)時,我們無法以傳統宏觀的熱示差掃瞄卡量計(DSC)或是熱機械分析儀(TMA)量測到複合材料的玻璃轉移溫度。因此,我們建立一種新的奈米複合材料的量測方法 – 藉由臨場可變溫式原子力顯微鏡儀器(in situ thermal AFM)來即時觀察奈米複合材料的高分子鏈段因受熱而產生的奈米相轉移(nanophase transition)現象,進而找出奈米複合材料的表面玻璃轉移溫度(Tg, surface)。而當奈米複合材料中的二氧化矽奈米粒子含量達到透路限度(percolation threshold)時,不論是改變有機成份的化學結構,抑或是改變無機成份的奈米粒子顆粒大小時,最終複合材料整體的熱性質及機械性質均會有明顯非線性的變化量產生。最後,我們合成出氟化醯酯壓克力作為有機成份的主體,添加二氧化矽奈米粒子來補強高分子材料的耐熱及機械性質,開發出無溶劑紫外光固化的有機無機混成材料,控制其奈米區域的大小可以得到超疏水的性質,氟化醯酯的組成使材料具有極佳的透光性及極低的透水性,可以應用在光波導元件、發光二極體、太陽能電池元件封裝及牙科填補材料等多方面的用途上。 | zh_TW |
| dc.description.abstract | This thesis is devoted to polymer-silica nanocomposites to study its physical and chemical properties. It contains three parts, the first part is to monitor the nanophase transition of the nanocomposites, the second part is to discuss effects of nanoparticle sizes and type of polymer chemical structures on the properties of nanocomposites, and the final part is to develop an innovative nanocomposite which has superhydrophobic and low moisture permeation properties. We have found that when the concentration of nanoparticles reaches its percolation threshold, the glass transition temperature of nanocomposite which can not be measured by to conventional macroscale thermal analytic instruments such as DSC and TMA. Therefore, we have established a methodology basis on in-situ thermal atomic force microscope to monitor the nanophase transition of the nanocomposite upon heating. When the concentration of nanoparticles reaches its percolation threshold, a dramatic increasing in thermal and mechanical properties that is universal regardless the chemical structure of polymers and the particles of the nanoparticles in the nanocomposite. Finally, we synthesize a fluoroimide acrylate as an organic component of nanocomposite, then add silica nanoparticles to reinforce the thermal stability and mechanical properties of polymer to develope a solventless photocurable nanocomposite resin system. To control the size of nanodomain can make materials have the superhydrophobic, and fluoroimide acrlate make materials have very low water vapor permeation. It has potential application in optical waveguides, light emitting diodes, device encapsulation, dental restorative materials and so on. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:13:40Z (GMT). No. of bitstreams: 1 ntu-99-D92549001-1.pdf: 4673702 bytes, checksum: 30ef2f4a53239ca1e5d101ceeb4691ec (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 目錄
摘要 I Abstract II 目錄 III 圖目錄 VI 第一章 緒論 1 第二章 文獻回顧 5 第三章 量測方法的建立 – In situ probe nanophase transition in nanocomposite using thermal AFM 11 3.1 前言 11 3.2 透路限度效應(Percolation threshold effect) 13 3.3 實驗 21 3.3.1 化學藥品 21 3.3.1.1 單體 21 3.3.1.2 市售二氧化矽膠體溶液 22 3.3.1.3 光起始劑 22 3.3.2 製備透過3-(三甲氧基矽基)丙基甲基丙烯酸酯(MPS)表面改質的膠體二氧化矽 23 3.3.3 改質MA-ST-M 二氧化矽溶液 23 3.3.4 製備奈米複合材料前趨物溶液 23 3.3.5 製備奈米複合材料樣品 24 3.3.6 性質分析 24 3.3.6.1 奈米硬度(Nano-indentation) 24 3.3.6.2 熱重量分析(TGA) 25 3.3.6.3 熱機械分析(TMA) 25 3.3.6.4 稜鏡偶合儀(Prism Coupler) 25 3.3.6.5 臨場可變溫式原子力顯微鏡(in situ thermal AFM) 26 3.3.6.6 處影像處理3D AFM影像轉換成黑白影像 26 3.3.6.7 由可變溫式原子力顯微鏡圖形決定複合材料的玻璃轉移溫度 27 3.4 結果與討論 27 3.5 結論 36 第四章 二氧化矽含量與粒徑大小對奈米複材物性的非線性相關性 37 4.1 前言 37 4.2 實驗 39 4.2.1 化學藥品 39 4.2.1.1 市售二氧化矽膠體溶液 39 4.2.1.2 二氧化矽前趨物 40 4.2.1.3 單體 40 4.2.1.4 聚合物 41 4.2.1.5 偶合劑 41 4.2.1.6 光起始劑 42 4.2.2 製備透過3-(三甲氧基矽基)丙基甲基丙烯酸酯(3-(trimethoxysilyl)propyl methacrylate, MPS)表面改質的膠體二氧化矽 42 4.2.2.1 改質MA-ST-M 二氧化矽溶液 42 4.2.3 製備透過三甲基乙氧基矽(Trimethyl ethoxysilane, TMES)表面改質的膠體二氧化矽 43 4.2.3.1 改質粒徑大小不同的二氧化矽溶液 43 4.2.4 合成單一粒徑二氧化矽粒子 43 4.2.5 製備奈米複合材料前趨物溶液 44 4.2.6 製備奈米複合材料樣品 47 4.2.7 性質分析 48 4.2.7.1 傅氏轉換紅外線光譜(FT-IR) 48 4.2.7.2 奈米硬度(Nano-indentation) 49 4.2.7.3 場發射電子掃瞄顯微鏡(FE-SEM) 52 4.3 結果與討論 52 4.4 結論 69 第五章 具有高疏水性及低透濕性poly(fluoroimide acrylate)/SiO2奈米複材之無溶劑型光聚合樹脂 70 5.1 前言 70 5.2 實驗 71 5.2.1 化學藥品 71 5.2.1.1 溶劑 71 5.2.1.2 單體 71 5.2.1.3 市售二氧化矽膠體溶液 74 5.2.1.4 催化劑 74 5.2.1.5 光起始劑 75 5.2.2 光敏氟化醯酯壓克力(photosensitive fluoroimide acrylate, PSFIA)的合成 75 5.2.3 製備透過3-(三甲氧基矽基)丙基甲基丙烯酸酯(3-(trimethoxysilyl)propyl methacrylate, MPS)表面改質的膠體二氧化矽 77 5.2.3.1 改質 MA-ST-M二氧化矽 77 5.2.4 製備奈米複合材料前趨物溶液 77 5.2.5 製備奈米複合材料樣品 79 5.2.6 以熱聚合方式製備光敏氟化醯酯壓克力(thermal cured photosensitive fluoroimide acrylate, T-PSFIA)樣品 79 5.2.7 性質分析 80 5.2.7.1 傅氏轉換紅外線光譜(FT-IR) 80 5.2.7.2 核磁共振(NMR) 80 5.2.7.3 熱重量分析(TGA) 80 5.2.7.4 熱機械分析(TMA) 80 5.2.7.5 稜鏡偶合儀(Prism Coupler) 81 5.2.7.6 紫外線/可見光光譜 81 5.2.7.7 奈米硬度(Nano-indentation) 81 5.2.7.8 穿透式電子顯微鏡(TEM) 82 5.2.7.9 吸濕性行為 82 5.2.7.10 水氣滲透性行為 82 5.2.7.11 接觸角(Contact angle) 83 5.2.7.12 百格刀測試 83 5.2.8 光敏氟化醯酯壓克力的結構鑑定 83 5.2.8.1 光敏氟化醯酯壓克力(photosensitive fluoroimide acrylate, PSFIA)的結構鑑定 83 5.3 結果與討論 88 5.4 結論 102 參考文獻 103 圖目錄 Figure 2.1 Illustration of the range of domain sizes in hybrid materials[Loy, 1995]. 5 Figure 3.1 Filler volume fraction dependence for the conductivity of conductor-insulator composite [Youngs, 2002]. 11 Figure 3.2 Site percolation on the square lattice, illustrating various cluster sizes (s) for three values of p, the fraction of filled sites [Brinker, 1990]. 14 Figure 3.3 Variation of effective ε of the percolative composite, with increasing volume fraction of silver [Devaraju, 2006]. 15 Figure 3.4 Variation with silica concentration of the storage modulus at strain amplitudes < 0.1% (stars; left ordinate scale) and of the scaling exponent (right ordinate scale; squares calculated using the specific volume of the compound and circles using V corrected for the PVAc content). The vertical dashed line denotes the minimum filler concentration for formation on a silica network [Bogoslovov, 2008]. 16 Figure 3.5 Electrical conductivity of PMMA/ITO nanocomposites as a function of ITO content[Capozzi, 2008]. 16 Figure 3.6 Conductivity of the nanocomposite verse PPy content [Tang, 2009]. 17 Figure 3.7 Composite conductivity normalized to that of the bulk fillers as fuctions of volume fraction of fillers [Untereker, 2009]. 18 Figure 3.8 Electrical conductivity of aluminium-PE composites [Huang, 2009]. 18 Figure 3.9 Knoop hardness results for annealed PS-ND nanocomposite coatings as compared to the Halpin-Tsai model. The deviation from the model predictions begins ~ 13 vol% PDMS-SiOx, which supports the TEM-approximated percolation threshold[Harton, 2010]. 19 Figure 3.10 The tensile strength of EPDM composites with Si69 modified nano-zinc oxide, the dashed line in the Figures indicate the percolation point [Wang, 2010]. 19 Figure 3.11 AFM tapping mode images of samples: (a) FS-0, (b) FS-10, (c) FS-20, (d) FS-40, (e) FS-50, (f) FS-60 and (g) the phase image of FS-20. (scan size 1 μm × 1 μm, surface roughness scale in nm). 29 Figure 3.12 The processed AFM images of FS series samples. Black area indicates the nanoparticles filling area and white area is assumed as the vacancy region. Possible percolation occurs after the nanoparticle content achieves a critical value for this network. (scan size 1μm × 1μm). 30 Figure 3.13 The measured hardness linear fit as a function of SiO2 volume concentration. 31 Figure 3.14 The measured Young’s modulus linear fit as a function of SiO2 volume 31 Figure 3.15 Coefficient of thermal expansion linear fit as a function of SiO2 volume concentration. 32 Figure 3.16 Decomposition temperature linear fit as a function of SiO2 volume concentration. 32 Figure 3.17 Refractive index linear fit as a function of SiO2 volume concentration at 633 nm, 1316 nm and 1548 nm. 33 Figure 3.18 Surface morphology of FS-60 at various temperatures. (scan size 1 μm × 1 μm). 34 Figure 3.19 Thermal evolution of the area fraction of FS-60. The solid lines are obtained by Linear-Fit method. 35 Figure 4.1 IR spectra of (a) neat silica and (b) silica modified with TMES from 500 cm-1 to 4000 cm-1. 49 Figure 4.2 Effect of chemical composition on the hardness of SiO2/polymer nanocomposite, MPS- SiO2 / TEGDA-EOBDA (□) and TMES- SiO2 / PVB (○). 55 Figure 4.3 Effect of chemical compositions on the Young’s modulus of SiO2/polymer nanocomposite, MPS-SiO2 / TEGDA-EOBDA (□) and TMES-SiO2 / PVB (○). 55 Figure 4.4 Comparison of hardness of nanocomposites at different particle sizes between neat and surface-modified silica nanoparticles 59 Figure 4.5 Effect of silica content on the hardness of PVB with silica at different different particle sizes of 10, 20, 50, 100, 200 and 350 nm. 60 Figure 4.6 Effect of silica content on the Young’s modulus of PVB with silica at different different particle sizes of 10, 20, 50, 100, 200 and 350 nm. 61 Figure 4.7 Comparison of Young’s modulus of nanocomposites at different particle sizes between neat and surface-modified silica nanoparticles. 62 Figure 4.8 The FE-SEM micrographs obtain from the surface of the nanocomposites show the presence of 40 wt% SiO2 particles embedded in the PVB matrix. (a) PVB mixed with 10 nm surface-modifed SiO2 particles, (b) PVB mixed with 20 nm surface-modifed SiO2 particles, (c) PVB mixed with 50 nm surface-modifed SiO2 particles, (d) PVB mixed with 100 nm surface-modifed SiO2 particles, (e) PVB mixed with 10 nm neat SiO2 particles, (f) PVB mixed with 20 nm neat SiO2 particles, (g) PVB mixed with 50 nm neat SiO2 particles, (d) PVB mixed with 100 nm neat SiO2 particles. 64 Figure 4.9 Comparison of experimental and calculated Young’s modulus of WS series nanocomposites at different particle sizes. 65 Figure 4.10 Comparison of experimental and calculated Young’s modulus of VS series nanocomposites at different particle sizes. 66 Figure 4.11 Comparison of the hardness among chemical bonding, hydrogen bonding and Van der Waals force of nanocomposites at 20 nm silica. 68 Figure 4.12 Comparison of the Young’s modulus among chemical bonding, hydrogen bonding and Van der Waals force of nanocomposites at 20 nm silica. 68 Figure 5.1 IR spectra of (a) fluoroimide dianhydride (FIDA) and (b) fluoroimide acrylate (PSFIA) from 400 cm-1 to 4000 cm-1. 84 Figure 5.2 1H-NMR spectrum of fluoroimide dianhydride (FIDA) oligomer. 85 Figure 5.3 1H-NMR spectrum of fluoroimide acrylate (PSFIA) prepolymer. 86 Figure 5.4 Transmittance of nanocomposite films, (a) NES series and (b) NPS series. 91 Figure 5.5 TEM images of nanocomposites: (a) NES20, (b) NES40, (c) NES60, (d) NPS20, (e) NPS40 and (f) NPS60. 92 Figure 5.6 Refractive index of film samples of NES series and NPS series nanocomposites. 94 Figure 5.7 Comparison of microhardness between NES and NPS series nanocomposites. 95 Figure 5.8 Comparison of Young’s modulus between NES and NPS series nanocomposites. 95 Figure 5.9 Comparison of decomposition temperature between NES series and NPS series nanocomposites. 96 Figure 5.10 Comparison of coefficients of thermal expansion between NES series and NPS series nanocomposites. 97 Figure 5.11 Contact angles of NES series and NPS series nanocomposites. 98 Figure 5.12 (a) Comparison of contact angles between NES and NPS series, (b) water droplets on the surface of highly transparent NPS60 coated on glass and the inset shows the contact angle of the film is 142o. SEM images of nanocomposites (c) NES60 and (d) NPS60. 99 Figure 5.13 Comparison of water absorption between NES series and NPS series nanocomposites. 101 Figure 5.14 Comparison of water vapor permeation between NES series and NPS series nanocomposites. 101 表目錄 Table 2.1 Mechanical property of nylon 6-clay composites [Kojima, 1993] 7 Table 3.1 Compositions of SiO2-polyacrylate nanocomposites in weight %* 20 Table 3.2 Tg comparison of FS series (DSC, TMA and AFM) 31 Table 4.1 Compositions of modified silica nanoparticles 39 Table 4.2 Compositions of synthesized silica nanoparticles 40 Table 4.3 Compositions of SiO2 / polyacrylate nanocomposites in weight %* 41 Table 4.4 Compositions of SiO2 / PVB nanocomposites in weight % 42 Table 4.5 Compositions of modified SiO2 / PVB nanocomposites in weight % 43 Table 4.6 Particle size relationship between number of particle and total surface area at 1 g of nanoparticle. 53 Table 5.1 Compositions and acrylate functionality of T-PSFIA, NES series and NPS series of resin system. 74 Table 5.2 Prediction of fluoroimide dianhydride (FIDA) oligomer structure from proton numbers of 4,4'-(Hexafluoroisopropylidene) diphthalic anhydride (6FDA) and 4,4'-(Hexafluoroisopropylidene) dianiline (6FpDA) monomer units. 81 Table 5.3 Prediction of fluoroimide acrylate (PSFIA) prepolymer (ABA) from proton numbers of 4,4'-(Hexafluoroisopropylidene) diphthalic anhydride (6FDA) and 2-hydroxyethyl methacrylate (HEMA) monomer units. 83 Table 5.4 The adhesive properties of NES and NPS series evaluating by crosshatch adhesion test on glass substrate. 86 | |
| dc.language.iso | zh-TW | |
| dc.subject | 聚乙醯縮丁醛 | zh_TW |
| dc.subject | 有機/無機奈米複合材料 | zh_TW |
| dc.subject | 可變溫式原子力顯微鏡 | zh_TW |
| dc.subject | 透路限度 | zh_TW |
| dc.subject | 二氧化矽 | zh_TW |
| dc.subject | 氟化醯酯壓克力 | zh_TW |
| dc.subject | 透濕性 | zh_TW |
| dc.subject | 接觸角 | zh_TW |
| dc.subject | 壓克力 | zh_TW |
| dc.subject | organic/inorganic nanocomposites | en |
| dc.subject | PVB | en |
| dc.subject | acrylate and poly(vinyl butyral) | en |
| dc.subject | contact angle | en |
| dc.subject | water vapor permeation | en |
| dc.subject | fluoroimide acrylate | en |
| dc.subject | silica | en |
| dc.subject | percolation threshold | en |
| dc.subject | thermal AFM | en |
| dc.title | 有機-無機奈米複材的物性及化性研究 | zh_TW |
| dc.title | Investigation on physical and chemical properties of organic-inorganic nanocomposites | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 邱文英(Wen-Yen Chiu),趙基揚(Chi-Yang Chao),鄭國忠(KUO-CHUNG CHENG),林更青(Keng-Ching Lin) | |
| dc.subject.keyword | 有機/無機奈米複合材料,可變溫式原子力顯微鏡,透路限度,二氧化矽,氟化醯酯壓克力,透濕性,接觸角,壓克力,聚乙醯縮丁醛, | zh_TW |
| dc.subject.keyword | organic/inorganic nanocomposites,thermal AFM,percolation threshold,silica,fluoroimide acrylate,water vapor permeation,contact angle,acrylate and poly(vinyl butyral),PVB, | en |
| dc.relation.page | 116 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 4.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
