請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22160
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賴喜美 | |
dc.contributor.author | Yu-Hsuan Wu | en |
dc.contributor.author | 吳宥萱 | zh_TW |
dc.date.accessioned | 2021-06-08T04:05:46Z | - |
dc.date.copyright | 2018-08-03 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-07-27 | |
dc.identifier.citation | Atkin, N. J., Abeysekera, R. M., & Robards, A. W. (1998). The events leading to the formation of ghost remnants from the starch granule surface and the contribution of the granule surface to the gelatinization endotherm. Carbohydrate Polymers, 36(2-3), 193-204.
Baker, W. O. (1949). Microgel, A New Macromolecule. Industrial & Engineering Chemistry, 41(3), 511-520. Bragd, P. L., Besemer, A. C., & Van Bekkum, H. (2000). Bromide-free TEMPO-mediated oxidation of primary alcohol groups in starch and methyl α-d-glucopyranoside. Carbohydrate Research, 328(3), 355-363. Buleon, A., Colonna, P., Planchot, V., & Ball, S. (1998). Starch granules: structure and biosynthesis. International Journal of Biological Macromolecules, 23(2), 85-112. Catal, H., & İbanoğlu, Ş. (2014). Effect of aqueous ozonation on the pasting, flow and gelatinization properties of wheat starch. LWT - Food Science and Technology, 59(1), 577-582. Chang, P. S., & Robyt, J. F. (1996). Oxidation of Primary Alcohol Groups of Naturally Occurring Polysaccharides with 2,2,6,6-Tetramethyl-1-Piperidine Oxoammonium Ion. Journal of Carbohydrate Chemistry, 15(7), 819-830. Chen, X., Wang, S., Lu, M., Chen, Y., Zhao, L., Li, W., Yuan, Q., Norde, W., & Li, Y. (2014). Formation and characterization of light-responsive TEMPO-oxidized konjac glucomannan microspheres. Biomacromolecules, 15(6), 2166-2171. Chen, Y., Zhao, H., Liu, X., Li, Z., Liu, B., Wu, J., Shi, M., Norde, W., & Li, Y. (2016). TEMPO-oxidized Konjac glucomannan as appliance for the preparation of hard capsules. Carbohydr Polym, 143, 262-269. Chávez-Murillo, C. E., Wang, Y.-J., & Bello-Pérez, L. A. (2008). Morphological, Physicochemical and Structural Characteristics of Oxidized Barley and Corn Starches. Starch - Stärke, 60(11), 634-645. Chong, W. T., Uthumporn, U., Karim, A. A., & Cheng, L. H. (2013). The influence of ultrasound on the degree of oxidation of hypochlorite-oxidized corn starch. LWT - Food Science and Technology, 50(2), 439-443. Conto, L. C. D., Plata-Oviedo, M. S. V., Steel, C. J., & Chang, Y. K. (2011). Physico-chemical, morphological, and pasting properties of Pine nut (Araucaria angustifolia) starch oxidized with different levels of sodium hypochlorite. Starch - Stärke, 63(4), 198-208. Debet, M. R., & Gidley, M. J. (2007). Why do gelatinized starch granules not dissolve completely? Roles for amylose, protein, and lipid in granule 'ghost' integrity. J Agric Food Chem, 55(12), 4752-4760. Dhar, N., Akhlaghi, S. P., & Tam, K. C. (2012). Biodegradable and biocompatible polyampholyte microgels derived from chitosan, carboxymethyl cellulose and modified methyl cellulose. Carbohydrate Polymers, 87(1), 101-109. Dias, A. R. G., Zavareze, E. D. R., Elias, M. C., Helbig, E., Da Silva, D. O., & Ciacco, C. F. (2011). Pasting, expansion and textural properties of fermented cassava starch oxidised with sodium hypochlorite. Carbohydrate Polymers, 84(1), 268-275. Dziechciarek, Y., Van Soest, J. J., & Philipse, A. P. (2002). Preparation and properties of starch-based colloidal microgels. J Colloid Interface Sci, 246(1), 48-59. Dziedzic, S. Z.; Kearsley, M. W. (1995). Handbook of starch hydrolysis products and their derivatives. London: Blackie Academic & Professional. p. 230 Eichenbaum, G. M., Kiser, P. F., Dobrynin, A. V., Simon, S. A., & Needham, D. (1999). Investigation of the Swelling Response and Loading of Ionic Microgels with Drugs and Proteins: The Dependence on Cross-Link Density. Macromolecules, 32(15), 4867-4878. Forssell, P., Hamunen, A., Autio, K., Suortti, T., & Poutanen, K. (1995). Hypochlorite Oxidation of Barley and Potato Starch. starch-starke, 47. Gallant, D. J., & Bouchet, B. (1986). Ultrastructure of maize starch granules. A review. Food Structure, 5(1), 141-155. Gallant, D. J., Bouchet, B., Buleon, A., & Perez, S. (1992). Physical characteristics of starch granules and susceptibility to enzymatic degradation. Eur J Clin Nutr, 46(2), 3-16. Guo, L., Li, G., Liu, J., Meng, Y., & Tang, Y. (2013). Adsorptive decolorization of methylene blue by crosslinked porous starch. Carbohydr Polym, 93(2), 374-379. Halal, S. L. M. E., Colussi, R., Pinto, V. Z., Bartz, J., Radunz, M., Carreño, N. L. V., Dias, A. R. G., & Zavareze, E. D. R. (2015). Structure, morphology and functionality of acetylated and oxidised barley starches. Food Chemistry, 168, 247-256. Hizukuri, S. (1986). Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydrate Research, 147(2), 342-347. Hoebler, C., Karinthi, A., Devaux, M. F., Guillon, F., Gallant, D. J. G., Bouchet, B., Melegari, C., & Barry, J. L. (2007). Physical and chemical transformations of cereal food during oral digestion in human subjects. British Journal of Nutrition, 80(05). Huang, Y.-C., & Lai, H.-M. (2010). Noodle quality affected by different cereal starches. Journal of Food Engineering, 97(2), 135-143. Huang, Y. C., & Lai, H. M. (2014). Characteristics of the starch fine structure and pasting properties of waxy rice during storage. Food Chem, 152, 432-439. Huaxi, X., Qinlu, L., Gao Qiang, L., Yue, W., Wei, T., Wei, W., & Xiangjin, F. (2011). Physicochemical properties of chemically modified starches from different botanical origin. Scientific Research and Essays, 6(21), 4517-4525. IUPAC. 2007. Compendium of Chemical Terminology, 2nd ed. Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). Isogai, A., & Kato, Y. (1998). Preparation of Polyuronic Acid from Cellulose by TEMPO-mediated Oxidation. Cellulose, 5(3), 153-164. Isogai, A., Saito, T., & Fukuzumi, H. (2011). TEMPO-oxidized cellulose nanofibers. Nanoscale, 3(1), 71-85. Jenkins, P. J., & Donald, A. M. (1995). The influence of amylose on starch granule structure. International Journal of Biological Macromolecules, 17(6), 315-321. Kantouch, F., & Tawfik, S. (1998). Gelatinization of Hypochlorite Oxidized Maize Starch in Aqueous Solutions. Starch - Stärke, 50(2-3), 114-119. Korma, S. A., Alahmad, K., Niazi, S., Ammar, A. F., Zaaboul, F., & Zhang, T. (2016). Chemically Modified Starch and Utilization in Food Stuffs. International Journal of Nutrition and Food Sciences, 5(4). Kuakpetoon, D., & Wang, Y. J. (2001). Characterization of Different Starches Oxidized by Hypochlorite. Starch - Stärke, 53(5), 211-218. Kuakpetoon, D., & Wang, Y. J. (2006). Structural characteristics and physicochemical properties of oxidized corn starches varying in amylose content. Carbohydr Res, 341(11), 1896-1915. Kuakpetoon, D., & Wang, Y. J. (2008). Locations of hypochlorite oxidation in corn starches varying in amylose content. Carbohydr Res, 343(1), 90-100. Landfester, K., & Musyanovych, A. (2010). Hydrogels in Miniemulsions. In Chemical Design of Responsive Microgels, (pp. 39-63). Laohaphatanaleart, K., Piyachomkwan, K., Sriroth, K., Santisopasri, V., & Bertoft, E. (2009). A Study of the Internal Structure in Cassava and Rice Amylopectin. Starch - Stärke, 61(10), 557-569. Lawal, O. S., & Adebowale, K. O. (2005). Physicochemical characteristics and thermal properties of chemically modified jack bean (Canavalia ensiformis) starch. Carbohydrate Polymers, 60(3), 331-341. Lawal, O. S., Adebowale, K. O., Ogunsanwo, B. M., Barba, L. L., & Ilo, N. S. (2005). Oxidized and acid thinned starch derivatives of hybrid maize: functional characteristics, wide-angle X-ray diffractometry and thermal properties. Int J Biol Macromol, 35(1-2), 71-79. Li, J. H., & Vasanthan, T. (2003). Hypochlorite oxidation of field pea starch and its suitability for noodle making using an extrusion cooker. Food Research International, 36(4), 381-386. Li, Y., De Vries, R., Slaghek, T., Timmermans, J., Stuart, M. a. C., & Norde, W. (2009). Preparation and Characterization of Oxidized Starch Polymer Microgels for Encapsulation and Controlled Release of Functional Ingredients. Biomacromolecules, 10(7), 1931-1938. Li, Y., Kleijn, J. M., Cohen Stuart, M. A., Slaghek, T., Timmermans, J., & Norde, W. (2011). Mobility of lysozyme inside oxidized starch polymer microgels. Soft Matter, 7(5). Li, Y., Norde, W., & Kleijn, J. M. (2012). Stabilization of protein-loaded starch microgel by polyelectrolytes. Langmuir, 28(2), 1545-1551. Liu, J., Wang, B., Lin, L., Zhang, J., Liu, W., Xie, J., & Ding, Y. (2014). Functional, physicochemical properties and structure of cross-linked oxidized maize starch. Food Hydrocolloids, 36, 45-52. Lu, M., Li, Z., Liang, H., Shi, M., Zhao, L., Li, W., Chen, Y., Wu, J., Wang, S., Chen, X., Yuan, Q., & Li, Y. (2015). Controlled release of anthocyanins from oxidized konjac glucomannan microspheres stabilized by chitosan oligosaccharides. Food Hydrocolloids, 51, 476-485. Malmsten, M., Bysell, H., & Hansson, P. (2010). Biomacromolecules in microgels — Opportunities and challenges for drug delivery. Current Opinion in Colloid & Interface Science, 15(6), 435-444. Marques, M. R. C., Loebenberg, R., & Almukainzi, M. (2011). Simulated Biological Fluids with Possible Application in Dissolution Testing. Dissolution Technologies, 18(3), 15-28. Miles, M. J., Morris, V. J., Orford, P. D., & Ring, S. G. (1985). The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydrate Research, 135(2), 271-281. Missirlis, D., Tirelli, N., & Hubbell, J. A. (2005). Amphiphilic hydrogel nanoparticles. Preparation, characterization, and preliminary assessment as new colloidal drug carriers. Langmuir, 21(6), 2605-2613. Morrison, W. R.; Karkalas, J. (1990). Starch. Methods in plant biochemistry. In P. M. Dey (Ed.), Carbohydrates (pp. 323-352). New York: Chapmen and Hall. Wurzburg, O. B. (1986). Modified starches: Properties and uses. Boca Raton, FL: CRCPress Inc. Nelson, N. (1944). A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry, 153, 375-380. Nooy, A. E. J. D., Besemer, A. C., & Bekkum, H. V. (1995). Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydrate Research, 269(1), 89-98. Passauer, L., Bender, H., & Fischer, S. (2010). Synthesis and characterisation of starch phosphates. Carbohydrate Polymers, 82(3), 809-814. Páramo-Calderón, D. E., Carrillo-Ahumada, J., Juárez-Arellano, E. A., Bello-Pérez, L. A., Aparicio-Saguilán, A., & Alvarez-Ramirez, J. (2016). Effect of cross-linking on the physicochemical, functional and digestibility properties of starch from Macho (Musa paradisiacaL.) and Roatan (Musa sapientumL.) banana varieties. Starch - Stärke, 68(7-8), 584-592. Peat, S., Whelan, W. J., & Thomas, G. J. (1952). Evidence of multiple branching in waxy maize starch. Journal of the Chemical Society, 4536-4538. Pérez, S., & Bertoft, E. (2010). The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch - Stärke, 62(8), 389-420. Paraginski, R. T., Vanier, N. L., Moomand, K., De Oliveira, M., Zavareze Eda, R., Marques E Silva, R., Ferreira, C. D., & Elias, M. C. (2014). Characteristics of starch isolated from maize as a function of grain storage temperature. Carbohydr Polym, 102, 88-94. Parovuori, P., Hamunen, A., Forssell, P., Autio, K., & Poutanen, K. (1995). Oxidation of Potato Starch by Hydrogen Peroxide. Starch - Stärke, 47(1), 19-23. Pennington, J., Cohen, R. D., Tian, Y., & Boulineau, F. (2015). Development of an LC-MS method for ultra trace-level determination of 2,2,6,6-tetramethylpiperidine-1-oxl (TEMPO), a potential genotoxic impurity within active pharmaceutical ingredients. J Pharm Biomed Anal, 114, 488-492. Podaralla, S. K., Perumal, O. P., Kaushik, R. S. 2009. Design and formulation of protein-based NPDDS. In 'Drug delivery nanoparticles formulation and characterization,' Pathak, Y., Thassu, D. (Ed). Chapter 6. Taylor & Francis Group: Boca Raton, FL, USA. Read, N. W., Welch, I. M., Austen, C. J., Barnish, C., Bartlett, C. E., Baxter, A. J., Brown, G., Comption, M. E., Hume, K. E., Storie, I., & Worlding, J. (1986). Swallowing food without chewing; a simple way to reduce postprandial glycaemia. British Journal of Nutrition, 55(01). Reddy, N., & Yang, Y. (2010). Citric acid cross-linking of starch films. Food Chemistry, 118(3), 702-711. Rutenberg, M. W., & Solarek, V. (1984). Starch derivatives: production and uses. In R.L. Whistler, J. N. Bemiller, & E. F. Paschall (Eds.), Starch: Chemistry and technology(2nd ed., pp. 312–388). U.S.: Academic Press. Saito, T., & Isogai, A. (2006). Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 289(1-3), 219-225. Sandhu, K. S., Kaur, M., Singh, N., & Lim, S.-T. (2008). A comparison of native and oxidized normal and waxy corn starches: Physicochemical, thermal, morphological and pasting properties. LWT - Food Science and Technology, 41(6), 1000-1010. Sangseethong, K., Lertphanich, S., & Sriroth, K. (2009). Physicochemical Properties of Oxidized Cassava Starch Prepared under Various Alkalinity Levels. starch-starke, 61(2), 92-100. Sánchez-Rivera, M. M., García-Suárez, F. J. L., Velázquez Del Valle, M., Gutierrez-Meraz, F., & Bello-Pérez, L. A. (2005). Partial characterization of banana starches oxidized by different levels of sodium hypochlorite. Carbohydrate Polymers, 62(1), 50-56. Sánchez-Rivera, M. M., Méndez-Montealvo, G., Núñez-Santiago, C., De La Rosa-Millan, J., Wang, Y.-J., & Bello-Pérez, L. A. (2009). Physicochemical Properties of Banana Starch Oxidized under Different Conditions. Starch - Stärke, 61(3-4), 206-213. Singh, A. V., & Nath, L. K. (2013). Evaluation of chemically modified hydrophobic sago starch as a carrier for controlled drug delivery. Saudi Pharm J, 21(2), 193-200. Sukhija, S., Singh, S., & Riar, C. S. (2016). Effect of oxidation, cross-linking and dual modification on physicochemical, crystallinity, morphological, pasting and thermal characteristics of elephant foot yam (Amorphophallus paeoniifolius) starch. Food Hydrocolloids, 55, 56-64. Tanaka, R., Saito, T., & Isogai, A. (2012). Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO(2) systems in water at pH 4.8 or 6.8. Int J Biol Macromol, 51(3), 228-234. Tao, Y., Zhang, R., Xu, W., Bai, Z., Zhou, Y., Zhao, S., Xu, Y., & Yu, D. (2016). Rheological behavior and microstructure of release-controlled hydrogels based on xanthan gum crosslinked with sodium trimetaphosphate. Food Hydrocolloids, 52, 923-933. Thomas, J. E. (1957). Mechanics and regulation of gastric emptying. Physiol Rev, 37(4), 453-474. Tolvanen, P., Mäki-Arvela, P., Sorokin, A. B., Salmi, T., & Murzin, D. Y. (2009). Kinetics of starch oxidation using hydrogen peroxide as an environmentally friendly oxidant and an iron complex as a catalyst. Chemical Engineering Journal, 154(1-3), 52-59. Trongsatitkul, T., & Budhlall, B. M. (2013). Microgels or microcapsules? Role of morphology on the release kinetics of thermoresponsive PNIPAm-co-PEGMa hydrogels. Polym. Chem., 4(5), 1502-1516. Vamadevan, V., & Bertoft, E. (2015). Structure-function relationships of starch components. Starch - Stärke, 67(1-2), 55-68. Vanier, N. L., El Halal, S. L., Dias, A. R., & Da Rosa Zavareze, E. (2017). Molecular structure, functionality and applications of oxidized starches: A review. Food Chem, 221, 1546-1559. Vanier, N. L., Elessandra, D. R. Z., Pinto, V. Z., Klein, B., Botelho, F. T., Dias, A. R. G., & Elias, M. C. (2012). Physicochemical, crystallinity, pasting and morphological properties of bean starch oxidised by different concentrations of sodium hypochlorite. Food Chemistry, 131(4), 1255-1262. Wang, S., Chen, X., Shi, M., Zhao, L., Li, W., Chen, Y., Lu, M., Wu, J., Yuan, Q., & Li, Y. (2015). Absorption of whey protein isolated (WPI)-stabilized β-Carotene emulsions by oppositely charged oxidized starch microgels. Food Research International, 67, 315-322. Wang, S., & Copeland, L. (2013). Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: a review. Food Funct, 4(11), 1564-1580. Wang, Y. J., & Wang, L. F. (2003). Physicochemical properties of common and waxy corn starches oxidized by different levels of sodium hypochlorite. Carbohydrate Polymers, 52(3), 207-217. Wang, Z., Li, Y., Chen, L., Xin, X., & Yuan, Q. (2013). A study of controlled uptake and release of anthocyanins by oxidized starch microgels. J Agric Food Chem, 61(24), 5880-5887. Wang, Y. J., Kuo, M. I., Wang, L., & Patindol, J. (2007). Chemical Composition and Structure of Granule Periphery and Envelope Remnant of Rice Starches as Revealed by Chemical Surface Gelatinization. Starch - Stärke, 59(9), 445-453. Wongsagonsup, R., Pujchakarn, T., Jitrakbumrung, S., Chaiwat, W., Fuongfuchat, A., Varavinit, S., Dangtip, S., & Suphantharika, M. (2014). Effect of cross-linking on physicochemical properties of tapioca starch and its application in soup product. Carbohydr Polym, 101, 656-665. Xu, Y., & Du, Y. (2003). Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. International Journal of Pharmaceutics, 250(1), 215-226. Yao, Z. L., Grishkewich, N., & Tam, K. C. (2013). Swelling and shear viscosity of stimuli-responsive colloidal systems. Soft Matter, 9(22). Yoo, S. H., & Jane, H. L. (2002). Molecular weights and gyration radii of amylopectins determined by high-performance size-exclusion chromatography equipped with multi-angle laser-light scattering and refractive index detectors. Carbohydrate Polymers, 49(3), 307-314. Yuryev, V. P.,Tomasik,P., Ruck H. (2004). Starch: From Polysaccharides to Granules, Simple and Mixture Gels Zhang, Y.-R., Wang, X.-L., Zhao, G.-M., & Wang, Y.-Z. (2012). Preparation and properties of oxidized starch with high degree of oxidation. Carbohydrate Polymers, 87(4), 2554-2562. Zhang, B., Dhital, S., Flanagan, B. M., & Gidley, M. J. (2014). Mechanism for starch granule ghost formation deduced from structural and enzyme digestion properties. J Agric Food Chem, 62(3), 760-771. Zhao, L., Chen, Y., Li, W., Lu, M., Wang, S., Chen, X., Shi, M., Wu, J., Yuan, Q., & Li, Y. (2015). Controlled uptake and release of lysozyme from glycerol diglycidyl ether cross-linked oxidized starch microgel. Carbohydr Polym, 121, Zhao, M., Li, J., Mano, E., Song, Z., Tschaen, D. M., Grabowski, E. J. J., & Reider, P. J. (1999). Oxidation of Primary Alcohols to Carboxylic Acids with Sodium Chlorite Catalyzed by TEMPO and Bleach. The Journal of Organic Chemistry, 64(7), 2564-2566. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22160 | - |
dc.description.abstract | 本研究將以TEMPO/NaClO系統氧化一般玉米澱粉(normal corn starch, NC),製備得TEMPO 觸媒氧化澱粉,並保留澱粉套膜,經預糊化與三偏磷酸鈉交聯之方式,將氧化澱粉澱粉粒由無法隨意改變體積之硬粒子,變成在不同條件溶液中具明顯體積變化之軟粒子,稱之為澱粉微凝膠(starch microgel)。此澱粉微凝膠能感應外在環境中pH及離子強度的改變,而產生體積的變化,使其具有包覆攜帶與釋放的功能。試驗中,亦將利用咖啡因及溶菌酶測試其裝載與釋放物質之能力。試驗結果得知,利用TEMPO/NaClO氧化系統能得到較一般NaClO氧化法carboxyl groups 含量較高之氧化澱粉,且與常見之NaClO氧化法相比,尖峰黏度、膨潤力及溶解度皆有顯著提升之現象。在TEMPO/NaClO氧化反應的過程中,會發生澱粉粒結構受損與澱粉分子量降解的情況。其糊液黏度及熱性質測定結果顯示,成糊溫度及起始溫度隨著氧化度提高而有下降趨勢,尖峰黏度、最終黏度及熱焓值亦隨氧化時間延長而有下降趨勢。完全糊化之氧化澱粉糊液,其光穿透度隨氧化度或氧化時間延長有上升趨勢。若在TEMPO/NaClO氧化反應後加入NaBH4,將有助於改善糊液黏度測定時氧化澱粉分子降解之情況。所有氧化澱粉之樣品中,OS1501-BH4及OS2501-BH4註在較高溫度(95°C)下仍可維持穩定之膨潤力,表示其熱穩定性較佳,適合用來製備微凝膠。將OS1501-BH4及OS2501-BH4分別以60°C及55°C預糊化10 min,並加入不同比率之三偏磷酸鈉 (trisodium trimetaphosphate, STMP) 進行交聯試驗。結果顯示,STMP交聯澱粉微凝膠在較高pH (pH 8)及較低離子強度(0 mM)下擁有較佳之膨潤能力。隨著STMP添加量上升,膨潤力則下降趨勢。將STMP交聯氧化澱粉微凝膠裝載不同大小之化合物,例如:咖啡因及溶菌酶時,小分子之咖啡因無法被微凝膠內部之網狀結構所限制,使其自由進出微凝膠,導致不具控制釋放之效果。試驗結果亦顯示,大分子之溶菌酶較適合被澱粉微凝膠攜帶,其若懸浮在低離子強度之溶液中,能保留裝載之70%物質至模擬小腸環境(不含酵素)中才被釋放,以達到控制釋放之效果。
註:OS1501-BH4及OS2501-BH4表示在氧化反應中,NaClO添加量為1.5及2.5 mmol/ g starch,進行氧化反應1h,並加入NaBH4選擇性還原carbonyl groups者。 | zh_TW |
dc.description.abstract | TEMPO catalyst oxidized starch was prepared through TEMPO / NaClO oxidized system with normal corn starch (NC). After pregelatinization and cross-linking with sodium trimetaphosphate (STMP), the oxidized starch granules changed from hard particles into soft particles which could display significant volume change in different solutions. They could be called microgels. The envelope of oxidized starch starch granules were still retained, so they could be distinguished as independent particles. The starch microgels can sense the change of pH and ionic strength in the external environment, and display significant volume change. They have the ability to load and release substances. Caffeine and lysozyme will be used to test their loading and releasing ability. The experimental results show that TEMPO/NaClO oxidation system can obtain oxidized starch with higher carboxyl groups content than traditional NaClO oxidation method. Compared with the NaClO oxidation method, the peak viscosity, swelling power and solubility were significantly improved. In the process of TEMPO/NaClO oxidation, the structure of starch granumles were damaged and the molecular weight of starch molecules were degraded. As shown in the results of pasting properties and thermal properties, the peak viscosity and initial temperature decreased with the increase of oxidation degree. The peak viscosity, final viscosity and enthalpydecreased with extension of the oxidation time. The light transmittance of completely gelatinized oxidized starch paste increased with the increase of oxidation degree or oxidation time. Adding NaBH4 after TEMPO/NaClO oxidation could improve the degradation of oxidized starch molecules during pasting properties test. OS1501-BH4 and OS2501-BH4* maintained a stable swelling power at higher temperatures (95°C). It indicatedthe better thermal stability. They were suitable for the preparation of microgels. OS1501-BH4 and OS2501-BH4 were pregelatinized at 60°C and 55°C for 10 min, and cross-linked with different ratios of sodium trimetaphosphate. The results showed that microgel displayed higher swelling power at higher pH (pH 8) and lower ionic strength (0 mM). The swelling power decreased with increase of the STMP ratio. STMP cross-linked oxidized starch microgels loaded two different compounds with different sizes. They were caffeine and lysozyme. The experimental results showed that loading content decreased with increase of the STMP ratio. Because of the small size, caffeine couldn’t be stayed inside the microgels. Caffeine entered and exited microgels freely, so it didn’t be controlled release. On the other way, the size of lysozyme was more suitable to be carried by the microgels. If they were suspended in a low ionic strength solution, 70% of the loaded components can be released in simulated intestinal conditions (without enzyme).
*OS1501-BH4 and OS2501-BH4 mean that starch was oxidized with NaClO (1.5 and 2.5 mmol / g starch) for 1h. After reaction, NaBH4 was added to selectively reduce carbonyl groups. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T04:05:46Z (GMT). No. of bitstreams: 1 ntu-107-R04623034-1.pdf: 7380760 bytes, checksum: 441dd4f48bd0ca3bfea350595b5c0b3c (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 中文摘要----I
Abstract----II 目錄----IV 表目錄----VIII 圖目錄----IX 第一章、前言----1 第二章、文獻探討----2 2.1 澱粉----2 2.1.1 澱粉分子----2 2.2.2 澱粉粒外觀形態----4 2.2.3 澱粉粒內部結構----4 2.2.4 澱粉套膜(envelope)----5 2.2 氧化澱粉 (Oxidized starch)----6 2.2.1 次氯酸鈉氧化澱粉----6 2.2.1.1 次氯酸鈉之氧化機制----6 2.2.1.2 次氯酸鈉觸媒氧化多醣之相關研究----7 2.2.1.3 次氯酸鈉氧化澱粉之物化性質----8 2.2.2 TEMPO觸媒氧化澱粉----10 2.2.2.1 TEMPO之化學結構與氧化機制----10 2.2.2.2 TEMPO觸媒氧化多醣之相關研究----13 2.2.2.3 TEMPO觸媒氧化澱粉----14 2.3 交聯澱粉 (Cross-linking starch)----15 2.3.1 三偏磷酸鈉交聯澱粉之產物----15 2.3.2 三偏磷酸鈉交聯澱粉之物化性質----16 2.4 微凝膠 (Microgel)----17 2.4.1 微凝膠之製備方法----17 2.4.2 刺激應答型微凝膠 19 2.4.3 刺激應答型澱粉微凝膠與其研究現況----20 2.5 生物活性物質 (Bioactive compounds)----21 2.5.1食物消化之消化道環境變化----21 2.5.2微凝膠之裝載與釋放機制----22 第三章、材料與方法----23 3.1 試驗架構----23 3.2 材料與化學試劑----24 3.2.1 試驗材料----24 3.2.2 化學試劑----24 3.3.1 氧化澱粉之製備----24 3.3.2 三偏磷酸鈉交聯微凝膠之製備----25 3.4 分析方法----26 3.4.1 氧化澱粉之物化性質分析----26 3.4.1.1 氧化度測定----26 3.4.1.2 紅外光譜測定----27 3.4.1.3 掃描式電子顯微鏡觀察----27 3.4.1.4 光學與偏光顯微鏡觀察----27 3.4.1.5 糊液黏度性質測定----27 3.4.1.6 熱性質測定----28 3.4.1.7 澱粉膨潤性質測定----29 3.4.1.8 穿透度測定----29 3.4.1.9澱粉分子量分布----29 3.4.1.10還原糖含量測定----30 3.4.1.11澱粉之鏈長分布----31 3.4.2 三偏磷酸鈉交聯氧化澱粉微凝膠之物化性質分析----32 3.4.2.1 預糊化溫度之判定----32 3.4.2.2 紅外光譜----32 3.4.2.3 膨潤力與溶解度----32 3.4.2.4 光學顯微鏡觀察----33 3.4.3 微凝膠之裝載及釋放測試----33 3.4.3.1微凝膠之咖啡因與溶菌酶裝載測試----33 3.4.3.2微凝膠之咖啡因與溶菌酶釋放測試----34 第四章、結果與討論----36 4.1 氧化澱粉之物化性質----36 4.1.1 氧化度與成膠量----36 4.1.3 掃描式電子顯微鏡觀察----40 4.1.4 光學顯微鏡觀察----41 4.1.5 糊液黏度性質----44 4.1.6 熱性質----47 4.1.7澱粉膨潤性質測定----49 4.1.8 透光度測定----53 4.1.9分子量分布----55 4.1.10還原糖含量----57 4.1.11 NaBH4對TEMPO/NaClO氧化澱粉之影響----58 4.1.11.1 分子量分布----58 4.1.11.2 鏈長分布----58 4.1.11.3 還原糖含量----63 4.1.11.4 結論----64 4.2 三偏磷酸鈉交聯氧化澱粉微凝膠之物化性質----65 4.2.1 預糊化溫度----65 4.2.2 紅外光譜----67 4.2.3 膨潤力與溶解度----68 4.2.4 光學顯微鏡觀察----74 4.2.5 結論----79 4.3 STMP交聯氧化澱粉微凝膠之裝載及釋放測試----81 4.3.1 咖啡因與溶菌酶之裝載曲線----81 4.3.2 咖啡因與溶菌酶之釋放曲線----83 4.3.3 光學顯微鏡觀察----85 4.3.4 結論----86 第五章、結論----88 第六章、參考資料----89 | |
dc.language.iso | zh-TW | |
dc.title | TEMPO 觸媒氧化澱粉與 pH 應答型微凝膠之製備及物化性質 | zh_TW |
dc.title | Preparation and physicochemical properties of TEMPO-oxidized starch and pH-responsive microgel | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 邵貽沅,呂廷璋,張永和 | |
dc.subject.keyword | TEMPO/NaClO氧化澱粉,預糊化,STMP澱粉交聯,應答型微凝膠,控制釋放, | zh_TW |
dc.subject.keyword | TEMPO/NaClO oxidized starch,pregelatinized,STMP cross-linked starch responsive microgel,controlled release, | en |
dc.relation.page | 97 | |
dc.identifier.doi | 10.6342/NTU201802038 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2018-07-27 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 7.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。