Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22104
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃義侑(Yi-You Huang)
dc.contributor.authorShu-Chi Chiangen
dc.contributor.author姜舒綺zh_TW
dc.date.accessioned2021-06-08T04:02:44Z-
dc.date.copyright2018-08-09
dc.date.issued2018
dc.date.submitted2018-08-06
dc.identifier.citation1. Cassin, B., Solomon, S., & Rubin, M. L. (1984). Dictionary of eye terminology. Triad Pub. Co..
2. Hayashi, S., Osawa, T., & Tohyama, K. (2002). Comparative observations on corneas, with special reference to Bowman's layer and Descemet's membrane in mammals and amphibians. Journal of morphology, 254(3), 247-258.
3. Mann, I. C. (1928). The development of the human eye.
4. Maurice, D. M. (1957). The structure and transparency of the cornea. The Journal of physiology, 136(2), 263-286.
5. Cox, J. L., Farrell, R. A., Hart, R. W., & Langham, M. E. (1970). The transparency of the mammalian cornea. The Journal of physiology, 210(3), 601-616.
6. Dua, H. S., Faraj, L. A., Said, D. G., Gray, T., & Lowe, J. (2013). Human corneal anatomy redefined: a novel pre-Descemet's layer (Dua's layer). Ophthalmology, 120(9), 1778-1785.
7. Yanoff, M., & Cameron, D. (2012). Diseases of the visual system. In Goldman's Cecil Medicine (Twenty Fourth Edition)(pp. 2426-2442).
8. The Discovery Eye Foundation, Understanding and Treating Corneal Scratches and Abrasions, in http://www.medifocus.be/hoe-ziet-u-0.
9. Dictionary of Optometry and Visual Science, 7th edition. 2009. Retrieved March 26, 2018, from https://medical-dictionary.thefreedictionary.com/corneal+
epithelium
10. Wilson, S. L., El Haj, A. J., & Yang, Y. (2012). Control of scar tissue formation in the cornea: strategies in clinical and corneal tissue engineering. Journal of functional biomaterials, 3(3), 642-687.
11. Zavala, J., Jaime, G. L., Barrientos, C. R., & Valdez-Garcia, J. (2013). Corneal endothelium: developmental strategies for regeneration. Eye, 27(5), 579-588.
12. Niederkorn, J. Y. (2003). The immune privilege of corneal grafts. Journal of leukocyte biology, 74(2), 167-171.
13. Tan, D. T., Dart, J. K., Holland, E. J., & Kinoshita, S. (2012). Corneal transplantation. The Lancet, 379(9827), 1749-1761.
14. Peh, G. S., Beuerman, R. W., Colman, A., Tan, D. T., & Mehta, J. S. (2011). Human corneal endothelial cell expansion for corneal endothelium transplantation: an overview. Transplantation, 91(8), 811-819.
15. Chirila, T. V., & Hicks, C. R. (1999). The origins of the artificial cornea: Pellier de Quengsy and his contribution to the modern concept of keratoprosthesis.
16. Heusser, J. (1860). Die Einheilung einer Cornea artificialis. Oesterr Ztschr Pract Med, 424.
17. Gomaa, A., Comyn, O., & Liu, C. (2010). Keratoprostheses in clinical practice–a review. Clinical & experimental ophthalmology, 38(2), 211-224.
18. Ma, J. J., Graney, J. M., & Dohlman, C. H. (2005). Repeat penetrating keratoplasty versus the Boston keratoprosthesis in graft failure. International ophthalmology clinics, 45(4), 49-59.
19. Khan, B. F., Harissi-Dagher, M., Pavan-Langston, D., Aquavella, J. V., & Dohlman, C. H. (2007). The Boston keratoprosthesis in herpetic keratitis. Archives of Ophthalmology, 125(6), 745-749.
20. Akpek, E. K., Harissi-Dagher, M., Petrarca, R., Butrus, S. I., Pineda, R., Aquavella, J. V., & Dohlman, C. H. (2007). Outcomes of Boston keratoprosthesis in aniridia: a retrospective multicenter study. American journal of ophthalmology, 144(2), 227-231.
21. Aquavella, J. V., Gearinger, M. D., Akpek, E. K., & McCormick, G. J. (2007). Pediatric keratoprosthesis. Ophthalmology, 114(5), 989-994.
22. Casey, T. A. (1966). Osteo-odonto-keratoprosthesis. Proceedings of the Royal Society of Medicine, 59(6), 530.
23. Mehta, J. S., Futter, C. E., Sandeman, S. R., Faragher, R. G. A. F., Hing, K. A., Tanner, K. E., & Allan, B. D. S. (2005). Hydroxyapatite promotes superior keratocyte adhesion and proliferation in comparison with current keratoprosthesis skirt materials. British journal of ophthalmology, 89(10), 1356-1362.
24. Donaghy CL, Vislisel JM, Greiner MA. An Introduction to Corneal Transplantation. May 21, 2015; Available from: http://EyeRounds.org/tutorials/cornea-transplant-intro/
25. Chirila, T. V., Vijayasekaran, S., Horne, R., Chen, Y. C., Dalton, P. D., Constable, I. J., & Crawford, G. J. (1994). Interpenetrating polymer network (IPN) as a permanent joint between the elements of a new type of artificial cornea. Journal of biomedical materials research, 28(6), 745-753.
26. Chow, C. C., Kulkarni, A. D., Albert, D. M., Darlington, J. K., & Hardten, D. R. (2007). Clinicopathologic correlation of explanted AlphaCor artificial cornea after exposure of implant. Cornea, 26(8), 1004-1007.
27. Hicks, C. R., Crawford, G. J., Lou, X., Tan, D. T., Snibson, G. R., Sutton, G., ... & Constable, I. J. (2003). Corneal replacement using a synthetic hydrogel cornea, AlphaCor™: device, preliminary outcomes and complications. Eye, 17(3), 385.
28. 謝秀欣(2017)。《再生醫學大躍進─初勘再生醫學研究新進展》。工研院IEK。
29. Liu, W., Merrett, K., Griffith, M., Fagerholm, P., Dravida, S., Heyne, B., ... & Munger, R. (2008). Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials, 29(9), 1147-1158.
30. Borene, M. L., Barocas, V. H., & Hubel, A. (2004). Mechanical and cellular changes during compaction of a collagen-sponge-based corneal stromal equivalent. Annals of Biomedical Engineering, 32(2), 274-283.
31. Kato, M., Taguchi, T., & Kobayashi, H. (2007). An attempt to construct the stroma of cornea using primary cultured corneal cells. Journal of nanoscience and nanotechnology, 7(3), 748-751.
32. Orwin, E. J., & Hubel, A. (2000). In vitro culture characteristics of corneal epithelial, endothelial, and keratocyte cells in a native collagen matrix. Tissue engineering, 6(4), 307-319.
33. Crabb, R. A., Chau, E. P., Decoteau, D. M., & Hubel, A. (2006). Microstructural characteristics of extracellular matrix produced by stromal fibroblasts. Annals of biomedical engineering, 34(10), 1615-1627.
34. Lai, J. Y., Li, Y. T., Cho, C. H., & Yu, T. C. (2012). Nanoscale modification of porous gelatin scaffolds with chondroitin sulfate for corneal stromal tissue engineering. International journal of nanomedicine, 7, 1101.
35. Lawrence, B. D., Marchant, J. K., Pindrus, M. A., Omenetto, F. G., & Kaplan, D. L. (2009). Silk film biomaterials for cornea tissue engineering. Biomaterials, 30(7), 1299-1308.
36. Tan, X. W., Hartman, L., Tan, K. P., Poh, R., Myung, D., Zheng, L. L., ... & Ta, C. N. (2013). In vivo biocompatibility of two PEG/PAA interpenetrating polymer networks as corneal inlays following deep stromal pocket implantation. Journal of Materials Science: Materials in Medicine, 24(4), 967-977.
37. Ghezzi, C. E., Rnjak-Kovacina, J., & Kaplan, D. L. (2015). Corneal tissue engineering: recent advances and future perspectives. Tissue Engineering Part B: Reviews, 21(3), 278-287.
38. Liu, L., Kuffova, L., Griffith, M., Dang, Z., Muckersie, E., Liu, Y., ... & Forrester, J. V. (2007). Immunological responses in mice to full-thickness corneal grafts engineered from porcine collagen. Biomaterials, 28(26), 3807-3814.
39. Zeng, Y., Yang, J., Huang, K., Lee, Z., & Lee, X. (2001). A comparison of biomechanical properties between human and porcine cornea. Journal of biomechanics, 34(4), 533-537.
40. Hara, H., & Cooper, D. K. (2011). Xenotransplantation–the future of corneal transplantation?. Cornea, 30(4), 371.
41. Izatt, J. A., Hee, M. R., Swanson, E. A., Lin, C. P., Huang, D., Schuman, J. S., ... & Fujimoto, J. G. (1994). Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Archives of ophthalmology, 112(12), 1584-1589.
42. Ramos, J. L. B., Li, Y., & Huang, D. (2009). Clinical and research applications of anterior segment optical coherence tomography–a review. Clinical & experimental ophthalmology, 37(1), 81-89.
43. Chua, S. (2015). High-definition optical coherence tomography for the study of evolution of a disease. Dermatology Bulletin, 26(1), 2-3.
44. Alan, Chiang and C. Y. Chang (2017). Technology Overview and Biomedical Application of Optical Coherence Tomography. Industrial Materials, (370), 108-116.
45. Fujimoto, J. G., Puliafito, C. A., Margolis, R., Oseroff, A., De Silvestri, S., & Ippen, E. P. (1986). Femtosecond optical ranging in biological systems. Optics letters, 11(3), 150-152.
46. Fercher, A. F., & Roth, E. (1986, September). Ophthalmic laser interferometry. In Optical instrumentation for biomedical laser applications (Vol. 658, pp. 48-52). International Society for Optics and Photonics.
47. Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stinson, W. G., Chang, W., ... & Puliafito, C. A. (1991). Optical coherence tomography. Science, 254(5035), 1178-1181.
48. Fercher, A. F., Hitzenberger, C. K., Drexler, W., Kamp, G., & Sattmann, H. (1993). In vivo optical coherence tomography. American journal of ophthalmology, 116(1), 113.
49. Swanson, E. A., Izatt, J. A., Hee, M. R., Huang, D., Lin, C. P., Schuman, J. S., ... & Fujimoto, J. G. (1993). In vivo retinal imaging by optical coherence tomography. Optics letters, 18(21), 1864-1866.
50. Schuman, J. S., Hee, M. R., Arya, A. V., Pedut-Kloizman, T., Puliafito, C. A., Fujimoto, J. G., & Swanson, E. A. (1995). Optical coherence tomography: a new tool for glaucoma diagnosis. Current opinion in ophthalmology, 6(2), 89-95.
51. Schuman, J. S., Hee, M. R., Puliafito, C. A., Wong, C., Pedut-Kloizman, T., Lin, C. P., ... & Fujimoto, J. G. (1995). Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography: a pilot study. Archives of ophthalmology, 113(5), 586-596.
52. Schuman, J. S., Pedut-Kloizman, T., Hertzmark, E., Hee, M. R., Wilkins, J. R., Coker, J. G., ... & Swanson, E. A. (1996). Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology, 103(11), 1889-1898.
53. Izatt, J. A., Kulkarni, M. D., Wang, H. W., Kobayashi, K., & Sivak, M. V. (1996). Optical coherence tomography and microscopy in gastrointestinal tissues. IEEE Journal of Selected topics in quantum electronics, 2(4), 1017-1028.
54. Beaurepaire, E., Boccara, A. C., Lebec, M., Blanchot, L., & Saint-Jalmes, H. (1998). Full-field optical coherence microscopy. Optics letters, 23(4), 244-246.
55. Zhang, C., Du, L., Sun, P., Shen, L., Zhu, J., Pang, K., & Wu, X. (2017). Construction of tissue-engineered full-thickness cornea substitute using limbal epithelial cell-like and corneal endothelial cell-like cells derived from human embryonic stem cells. Biomaterials, 124, 180-194.
56. Ghouali, W., Grieve, K., Bellefqih, S., Sandali, O., Harms, F., Laroche, L., ... & Borderie, V. (2015). Full-field optical coherence tomography of human donor and pathological corneas. Current eye research, 40(5), 526-534.
57. Kheir, E., Stapleton, T., Shaw, D., Jin, Z., Fisher, J., & Ingham, E. (2011). Development and characterization of an acellular porcine cartilage bone matrix for use in tissue engineering. Journal of biomedical materials research Part A, 99(2), 283-294.
58. Enobakhare, B. O., Bader, D. L., & Lee, D. A. (1996). Quantification of sulfated glycosaminoglycans in chondrocyte/alginate cultures, by use of 1, 9-dimethylmethylene blue. Analytical biochemistry, 243(1), 189-191.
59. Vassilev, V. S., Mandai, M., Yonemura, S., & Takeichi, M. (2012). Loss of N-Cadherin from the Endothelium Causes Stromal Edema and Epithelial Dysgenesis in the Mouse CorneaN-Cadherin Loss from the Endothelium. Investigative ophthalmology & visual science, 53(11), 7183-7193.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22104-
dc.description.abstract角膜是眼睛前端的一層透明薄膜,若損傷導致角膜出現疤痕或混濁,會造成視力模糊,甚至失明,雖然角膜移植手術為常見的角膜外科手術,也是成功率最高的器官移植手術,但是目前面臨的困境是捐贈角膜供不應求的問題,因此,現階段目標是希望利用組織工程技術開發人類眼角膜替代物,以提供穩定的角膜來源。此外,角膜重建的研究上目前都以組織切片的方法來分析評估,但僅能得到縱切面的影像,若能利用非侵入式的FF-OCT技術取得高解析度的二維組織影像,對於角膜替代物的開發能提供有效且快速的分析。
本研究的目的在於利用去細胞之豬角膜作為支架,將兔子角膜細胞共培養於上,建構一全層的角膜替代物,並使用FF-OCT技術對重建的角膜替代物進行縱切面與橫切面的影像分析,以快速且高解析的方式取得角膜組織的二維結構。
實驗結果顯示,體外培養之兔子角膜上皮與內皮細胞可以成功地共培養在去細胞豬角膜支架上,並形成完整的細胞層。藉由H&E染色可以看到,上皮細胞層因為受到擠壓且脫落,大約保留有3-4層的上皮細胞層,而內皮層一樣有整層脫落的情形,然而,由FF-OCT的影像可以清楚看到,上皮細胞層由5-6層的上皮細胞組成,內皮細胞層則為單層的結構,相較於H&E染色的切片圖,FF-OCT技術較能有效地取得高解析度的角膜重建分析結果。
zh_TW
dc.description.abstractThe cornea is a transparent film in the front of the eye. Diseases of the cornea may lead to corneal opacification, visual impairment and even blindness. Corneal transplant surgery is a common corneal surgery, but also the high rate of success in all organ transplantations. However, there is a severe shortage of suitable cornea donors in many countries with an increased use of the old-aged population and corrective laser surgery. Therefore, the aim of this study was to construct a corneal replacement using acellular porcine corneal matrix (APCM) as a scaffold and coculturing rabbit epithelial and endothelial cells. In addition, studies of corneal reconstruction are currently analyzed and evaluated using tissue slices, but the process of tissue sectioning is quite complex and the processing time is lengthy. If non-invasive FF-OCT technology can quickly obtain biological tissue images and provide high-resolution images, it will be a great contribution in the field of research of artificial cornea.
The aim of this study was to analyze the coculture of rabbit corneal epithelium and endothelium on acellular porcine cornea matrix(APCM) with full-field optical coherence tomography(FF-OCT). Results show that rabbit corneal epithelial and endothelial cells can be cocultured on APCM scaffold in vitro. According to H&E staining, epithelium layer was squeezed and detached, and so did endothelium layer. However, FF-OCT images clearly show that the corneal epithelium was composed of 5-6 layers of cells, and the corneal endothelium was a monolayer. Collectively, the study demonstrate that FF-OCT technology can quickly and efficiently achieve high-resolution analysis results of reconstructed corneal tissue.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:02:44Z (GMT). No. of bitstreams: 1
ntu-107-R05548031-1.pdf: 5836106 bytes, checksum: 30fbf30d4fe14ff0e69dc0fe441726d6 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 眼角膜構造與功能 1
1.1.1 眼角膜移植 4
1.1.2 眼角膜之移植手術(角膜捐贈) 4
1.1.3 角膜替代物(人工角膜) 6
1.2 再生醫學 9
1.2.1 眼角膜組織工程 10
1.2.2 去細胞豬角膜 11
1.3 OCT在眼角膜之應用 12
1.3.1 OCT發明的起源 13
1.3.2 OCT技術原理 14
1.3.3 OCT的發展歷史 15
第二章 研究概述 16
2.1 研究背景 16
2.2 研究動機與目的 16
2.3 研究架構圖 19
第三章 實驗材料與方法 20
3.1 實驗藥品 20
3.2 實驗儀器 22
3.3 去細胞豬角膜基質(acellular)支架之製備 23
3.4 冷凍乾燥法 24
3.5 DNA含量測定 25
3.6 葡萄糖胺聚糖(Glycosaminoglycan, GAGs)含量測定 26
3.7 掃描式電子顯微鏡(SEM) 27
3.8 光學同調斷層掃描(Optical Coherence Tomography; OCT) 28
3.9 組織切片前處理 28
3.10 利用DAPI螢光染色觀察豬角膜基質支架的去細胞情形 29
3.11 免疫細胞化學染色(Immunocytochemistry; ICC) 29
3.11.1 Cytokeratin 3+12 30
3.11.2 N-Cadherin 30
3.12 角膜初代細胞之培養 31
3.12.1 兔子角膜上皮細胞培養 31
3.12.2 兔子角膜內皮細胞培養 31
3.12.3 牛角膜內皮細胞培養 32
3.13 角膜重建之模型建立 33
3.14 PKH26與PKH67染色 34
3.15 細胞毒性試驗(LIVE/DEAD cell viability assay) 35
第四章 結果與討論 36
4.1 去細胞豬角膜(APCM)之製備與觀察 36
4.2 角膜基質支架的去細胞程度評估 37
4.3 以OCT評估角膜基質支架的去細胞程度 38
4.4 角膜基質支架的結構與性質分析 41
4.5 組織培養之角膜細胞型態觀察 43
4.6 消化法之角膜內皮細胞型態觀察 45
4.7 角膜細胞之免疫螢光染色標定 47
4.8 角膜基質支架對於角膜細胞的毒性評估 49
4.9 角膜細胞共培養於角膜基質支架之生長情形 52
4.10 以H&E染色分析角膜細胞共培養於角膜基質支架之生長情形 53
4.11 以OCT分析角膜細胞共培養於角膜基質支架之生長情形 54
4.12 以OCT分析角膜上皮細胞於氣液介面培養環境下之生長情形 58
4.13 角膜上皮與內皮細胞共培養於角膜基質支架之免疫螢光染色 60
第五章 結論 61
參考文獻 62
dc.language.isozh-TW
dc.title以全域式光學同調斷層掃描儀分析去細胞豬角膜基質支架上的角膜再生zh_TW
dc.titleStudy of Corneal Regeneration on Acellular Porcine Cornea Matrix by Full-field Optical Coherence Tomographyen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃意真(Yi-Cheng Huang),許馨云(Hsin-Yun Hsu)
dc.subject.keyword角膜替代物,角膜細胞培養,去細胞豬角膜基質,光學同調斷層掃描,zh_TW
dc.subject.keywordcorneal substitute,corneal cells culture,acellular porcine corneal matrix,optical coherence tomography,en
dc.relation.page66
dc.identifier.doi10.6342/NTU201802528
dc.rights.note未授權
dc.date.accepted2018-08-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
5.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved