Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22082
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃榮南(Rong-Nan Huang)
dc.contributor.authorDa-Syuan Yangen
dc.contributor.author楊達璿zh_TW
dc.date.accessioned2021-06-08T04:01:30Z-
dc.date.copyright2018-08-13
dc.date.issued2018
dc.date.submitted2018-08-07
dc.identifier.citation林俐玲、杜怡德、謝銘。2007。台灣中部坡地土壤水分特性曲線之研究及水分移動之模擬。中華水土保持學報 38 (4):341-348。
莊秉潔、簡光佑、江昭輝、蔡徵霖、黨美齡、劉俽宇、李育棋、洪景山。2015。台灣區域土壤含水率觀測網之建置與資料分析。大氣科學 43 (2):133-150。
陳任芳。2008。非農藥防治資材─亞磷酸之防病機制及應用。花蓮區農業專訊 63 (3):5-8。
楊曉峰。2007。土壤因子對台灣鋏蠓成蟲產卵及幼蟲發育的影響。國立中興大學昆蟲學研究所碩士論文。27 頁。
Allan SA, Kline DL. 1995. Evaluation of organic infusions and synthetic compounds mediating oviposition in Aedes albopictus and Aedes aegypti (Diptera: Culicidae). J Chem Ecol 21: 1847-1860.
Beckel WE. 1958. Investigation of permeability, diapause, and hatching in the eggs of the mosquito Aedes hexodontus Dyar. Can J Zool 36: 541-554.
Beier JC, Copeland R, Oyaro C, Masinya A, Odago WO, Oduor S, Koech DK, Roberts CR. 1990. Anopheles gambiae complex egg-stage survival in dry soil from larval development sites in western Kenya. J Am Mosq Control Assoc 6: 105-109.
Bentley MD, Day JF. 1989. Chemical ecology and behavioral aspects of mosquito oviposition. Annu Rev Entomol 34: 401-421.
Benzon GL, Apperson CS. 1988. Reexamination of chemically mediated oviposition behavior in Aedes aegypti (L.) (Diptera: Culicidae). J Med Entomol 25: 158-164.
Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254.
Brown HE, Smith C, Lashway S. 2017. Influence of the length of storage on Aedes aegypti (Diptera: Culicidae) egg viability. J Med Entomol 54: 489-491.
Bugoro H, Hii J, Russell TL, Cooper RD, Chan BK, Iro'ofa C, Butafa C, Apairamo A, Bobogare A, Chen CC. 2011. Influence of environmental factors on the abundance of Anopheles farauti larvae in large brackish water streams in Northern Guadalcanal, Solomon Islands. Malar J 10: 262. https://doi.org/10.1186/1475-2875-10-262
Burkett-Cadena ND, Mullen GR. 2007. Field comparison of Bermuda-hay infusion to infusions of emergent aquatic vegetation for collecting female mosquitoes. J Am Mosq Control Assoc 23: 117-123.
Chen YH, Lee MF, Lan JL, Chen CS, Wang HL, Hwang GY, Wu CH. 2005. Hypersensitiv¬ity to Forcipomyia taiwana (biting midge): clinical analysis and identification of major For t 1, For t 2 and For t 3 allergens. Allergy 60: 1518-1523.
Chuang YY, Lin CS, Wang CH, Yeh CC. 2000. Distribution and seasonal occurrence of Forcipomyia taiwana (Diptera: Ceratopogonidae) in the Nantou area in Taiwan. J Med Entomol 37: 205-209.
Clements AN. 1992 a. Biology of mosquitoes, Volume 1: Development, nutrition and reproduction. CABI, New York. pp 408-423.
Clements AN. 1992 b. Biology of mosquitoes, Volume 2: Sensory reception and behaviour. Chapman and Hall, New York. pp 433-626.
Day JF. 2016. Mosquito oviposition behavior and vector Control (review). Insects 7: 65. DOI: 10.3390/insects7040065.
Delkash-Roudsari S, Zibaee A, Bigham Z. 2015. Purification and characterization of a phenoloxidase in the hemocytes of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae): effects of insect growth regulators and endogenous inhibitors. J Enzyme Inhib Med Chem 30: 569-574.
Dethier VG, Brown LB, Smith CW. 1960. The designation of chemicals in terms of the responses they elicit from insects. J Econ Entomol 53: 134-136.
Diniz DFA, de Albuquerque CMR, Oliva LO, de Melo-Santos MAV, Ayres CFJ. 2017. Diapause and quiescence: dormancy mechanisms that contribute to the geographical expansion of mosquitoes and their evolutionary success. Parasit Vectors 10: 310. doi:10.1186/s13071-017-2235-0.
Doerge DR, Divi RL, Churchwell MI. 1997. Identification of the colored guaiacol oxidation product produced by peroxidases. Anal Biochem 250: 10-17.
Easton ZM, Bock E. 2016. Soil and soil water relationships. Virginia Cooperative Extension. Virginia State University, Petersburg. Publication BSE-194P. http://pubs.ext.vt.edu/content/dam/pubs_ext_vt_edu/BSE/BSE-194/BSE-194-PDF.pdf
Farnesi LC, Menna-Barreto RF, Martins AJ, Valle D, Rezende GL. 2015. Physical features and chitin content of eggs from the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus: Connection with distinct levels of resistance to desiccation. J Insect Physiol 83: 43-52.
Farnesi LC, Vargas HCM, Valle D, Rezende GL. 2017. Darker eggs of mosquitoes resist more to dry conditions: Melanin enhances serosal cuticle contribution in egg resistance to desiccation in Aedes, Anopheles and Culex vectors. PLoS Negl Trop Dis 11: e0006063. https://doi.org/10.1371/journal.pntd.0006063
Frank JH. 1985. Use of an artificial bromeliad to show the importance of color value in restricting colonization of bromeliads by Aedes aegypti and Culex quinquefasciatus. J Am Mosq Control Assoc 1: 28-32.
Galindo P, Stanley SJ, Trapido H. 1955. A contribution to the ecology and biology of tree hole breeding mosquitoes of Panama. Ann Entomol Soc Am 48: 158-164.
Hu X, Wang C, Wang L, Zhang R, Chen H. 2014. Influence of temperature, pH and metal ions on guaiacol oxidation of purified laccase from Leptographium qinlingensis. World J Microbiol Biotechnol 30: 1285-1290.
Hwang YS, Schultz GW, Axelrod H, Kramer WL, Mulla MS. 1982. Ovipositional repellency of fatty-acids and their derivatives against Culex (Diptera: Culicidae) and Aedes (Diptera: Culicidae) mosquitos. Environ Entomol 11: 223-226.
Kennedy JS. 1942. On water-finding and oviposition by captive mosquitoes. Bull Entomol Res 32: 279-301.
Lee C, Vythilingam I, Chong CS, Abdul Razak MA, Tan CH, Liew C, Pok KY, Ng LC. 2013. Gravitraps for management of dengue clusters in Singapore. Am J Trop Med Hyg 88: 888-892.
Li J. 1994. Egg chorion tanning in Aedes aegypti mosquito. Comp Biochem Physiol A Physiol 109: 835-843.
Li JS, Li J. 2006. Major chorion proteins and their crosslinking during chorion hardening in Aedes aegypti mosquitoes. Insect Biochem Mol Biol 36: 954-964.
Navarro DMAF, de Oliveira PES, Potting RPJ, Brito AC, Fital SJF, Sant'Ana AEG. 2003. The potential attractant or repellent effects of different water types on oviposition in Aedes aegypti L. (Dipt., Culicidae). J Appl Entomol 127: 46-50.
Ponnusamy L, Xu N, Nojima S, Wesson DM, Schal C, Apperson CS. 2008. Identification of bacteria and bacteria-associated chemical cues that mediate oviposition site preferences by Aedes aegypti. Proc Natl Acad Sci USA 105: 9262-9267.
Raikhel AS, Lea AO. 1991. Control of follicular epithelium development and vitelline envelope formation in the mosquito: role of juvenile hormone and 20-hydroxyecdysone. Tissue Cell 23: 577-591.
Ramasamy R, Jude PJ, Veluppillai T, Eswaramohan T, Surendran SN. 2014. Biological differences between brackish and fresh water-derived Aedes aegypti from two locations in the Jaffna peninsula of Sri Lanka and the implications for arboviral disease transmission. PLoS One 9: e104977. doi: 10.1371/journal.pone.0104977
Rapley LP, Johnson PH, Williams CR, Silcock RM, Larkman M, Long SA, Russell RC, Ritchie SA. 2009. A lethal ovitrap-based mass trapping scheme for dengue control in Australia: II. Impact on populations of the mosquito Aedes aegypti. Med Vet Entomol 23: 303-316.
Reiter P, Amador MA, Colon N. 1991. Enhancement of the CDC ovitrap with hay infusions for daily monitoring of Aedes aegypti populations. J Am Mosq Control Assoc 7: 52-55.
Rezende GL, Martins AJ, Gentile C, Farnesi LC, Pelajo-Machado M, Peixoto AA, Valle D. 2008. Embryonic desiccation resistance in Aedes aegypti: presumptive role of the chitinized serosal cuticle. BMC Dev Biol 8: 82.
Schlaeger DA, Fuchs MS. 1974. Effect of dopa-decarboxylase inhibition on Aedes aegypti eggs: evidence for sclerotization. J Insect Physiol 20: 349-357.
Tawatsin A, Asavadachanukorn P, Thavara U, Wongsinkongman P, Bansidhi J, Boonruad T, Chavalittumrong P, Soonthornchareonnon N, Komalamisra N, Mulla MS. 2006. Repellency of essential oils extracted from plants in Thailand against four mosquito vectors (Diptera: Culicidae) and oviposition deterrent effects against Aedes aegypti (Diptera: Culicidae). Southeast Asian J Trop Med Public Health 37: 915-931.
Thavara U, Tawatsin A, Chompoosri J. 2004. Evaluation of attractants and egg-laying substrate preference for oviposition by Aedes albopictus (Diptera: Culicidae). J Vector Ecol 29: 66-72.
Valencia MD, Miller LH, Mazur P. 1996. Permeability of intact and dechorionated eggs of the Anopheles mosquito to water vapor and liquid water: a comparison with Drosophila. Cryobiology 33: 142-148.
Valle D, Monnerat AT, Soares MJ, Rosa-Freitas MG, Pelajo-Machado M, Vale BS, Lenzi HL, Galler R, Lima JB. 1999. Mosquito embryos and eggs: polarity and terminology of chorionic layers. J Insect Physiol 45: 701-708.
Vargas HC, Farnesi LC, Martins AJ, Valle D, Rezende GL. 2014. Serosal cuticle formation and distinct degrees of desiccation resistance in embryos of the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus. J Insect Physiol 62: 54-60.
Venisse JS, Gullner G, Brisset MN. 2001. Evidence for the involvement of an oxidative stress in the initiation of infection of pear by Erwinia amylovora. Plant Physiol 125: 2164-2172.
Vinogradova EB. 2007. Diapause in aquatic insects, with emphasis on mosquitoes. In: Alekseev V, De Stasio B (eds). Diapause in Aquatic Invertebrates: Role for Ecology, Physiology and Human Uses. Springer, Dordrecht. 111 pp.
Wallis RC. 1954. The effect of population density and of NaCl concentrations in test series in laboratory experiments with ovipositing Aedes aegypti. Mosq News 14: 200-204.
Weber RG, Tipping C. 1990. Drinking as a preoviposition behavior of wild Culex pipiens (Diptera: Culicidae). Entomol News 101: 257-265.
Weber RG, Tipping C. 1993. Preoviposition Drinking by Culex restuans (Diptera: Culicidae). J Insect Behav 6: 343-349.
Williams CR, Ritchie SA, Long SA, Dennison N, Russell RC. 2007. Impact of a bifenthrin-treated lethal ovitrap on Aedes aegypti oviposition and mortality in north Queensland, Australia. J Med Entomol 44: 256-262.
Wu X, Zhan X, Gan M, Zhang D, Zhang M, Zheng X, Wu Y, Li Z, He A. 2013. Laccase2 is required for sclerotization and pigmentation of Aedes albopictus eggshell. Parasitol Res 112: 1929-1934.
Yeh CC, Chuang YY. 1996. Colonization and bionomics of Forcipomyia taiwana (Diptera:Ceratopogonidae) in the laboratory. J Med Entomol 33: 445-448.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22082-
dc.description.abstract埃及斑蚊 (Aedes aegypti (Linnaeus)) 與台灣鋏蠓 (Forcipomyia tai-wana (Shiraki)) 都是造成台灣公共衛生問題的重要害蟲,透過吸血引起人體產生紅腫或過敏反應,甚至傳播疾病。針對這兩種害蟲的防治過往主要著重於幼蟲與成蟲階段,卵期相對未受到重視。因此本研究著重於卵期防治,探討鹽類對埃及斑蚊和台灣鋏蠓的卵殼黑化的影響,及台灣鋏蠓卵的耐旱能力。結果顯示添加鹽類的產卵基質雖對埃及斑蚊與台灣鋏蠓有忌避產卵的效果,但若懷卵雌蟲將卵產於含鹽類基質上則無法黑化,亦無法順利孵化 (無效卵)。當埃及斑蚊產於含 0.5M 的 NaCl、KCl 與 MgCl2 鹽類的環境當中的卵黑化率分別為 3.96%、3.40% 以及 7.89%,且孵化率除 MgCl2 為1.17%,前兩者皆為 0%;而產於 CaCl2 及 K2SO4 鹽類中的卵黑化率約為 38 ~ 39%,而產於 (NH4)2SO4 鹽類的卵有 71% 黑化率,但孵化率皆為 0%。雖然產於 MgSO4 鹽類組別的卵可以全數黑化,但其黑化卵在二次水中的孵化率僅約 67%,明顯低於控制組 (孵化率 > 90%)。此外,在埃及斑蚊卵內之過氧化酶 (黑化相關酵素) 活性試驗,結果顯示黑化卵之酵素活性顯著高於無法黑化的白卵,因此推論額外添加的鹽類可能直接或間接影響胚胎內黑化相關酵素的活性。台灣鋏蠓產於含鹽類洋菜膠培養基的卵黑化率約在 0 ~ 40%,與控制組相比皆有顯著差異。而台灣鋏蠓卵的耐旱程度研究,利用吸水性良好的石膏做為卵的培養基質,將產出後 24 小時的卵挑至含水量 5 ~ 50% 的石膏盤上,發現含水量 20% 以上的石膏盤才能使卵不乾扁且孵化。此外,將卵保存於含水量 20% 與 30% 石膏盤上,並放置於 17℃ 與 27℃ 環境下,試驗結果顯示雖然卵可以維持八週不乾扁,但能夠孵化的卵幾乎都在前三週孵化完畢,此一結果顯示台灣鋏蠓的卵不如埃及斑蚊卵可以耐乾旱及長久保存。而鹽類影響斑蚊與鋏蠓卵黑化的相關機制有待進一步探究。zh_TW
dc.description.abstractBoth Aedes aegypti (Linnaeus) and Forcipomyia taiwana (Shiraki) are important pests inducing serious public health problems in Taiwan, such as allergic reaction and spreading diseases through bloodsucking. Though there are numerous control strategies, the eggs of mosquito did not receive much focus as the control target as that of larvae and adult stage. Therefore, my studies address the effect of salts on egg melanization and desiccation tol-erance of Ae. aegypti and F. taiwana. Our results showed that salt-containing milieu may deter the oviposition of both pests and the eggs laid on the salt-containing site are unable to melanize and hatch. In Ae. aegypti, the eggs laid on 0.5 M of NaCl, KCl and MgCl2 solution were barely tanned and unable to hatch. Although the melanization rate of eggs in CaCl2 or K2SO4 and (NH4)2SO4 were around 38-39% and 71% respectively, those eggs were all unable to hatch. The eggs laid in MgSO4 solution can be 100% melanization, their hatching rate was about 67%, which is still much lower than that in the control (> 90%). The peroxidase activity of dark eggs is much higher than that of white eggs, indicating that salts may have negative impact on melanization enzyme. In F. taiwana, the eggs laid on agar plate containing various con-centrations of salts were also barely melanized (melanization rate about 0-40%) and unable to hatch. When F. taiwana eggs laid in agar plate for 24 hours by gravid female were transferred to gypsum plate containing 5-50% water, only those eggs placed at > 20% water content plate can survive after one week. Though the egg shape can keep intact in gypsum plate with 20% or 30% water content under either 17 or 27oC for 8 weeks, no larva hatched after third week. These results suggested that F. taiwana eggs could not long sustain in dry environment as that of Ae. aegypti eggs. In summary, salts exert significant impacts on the melanization of both Ae. aegypti and F. taiwana egg, nevertheless, the mechanism remains further explored.en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:01:30Z (GMT). No. of bitstreams: 1
ntu-107-R02632014-1.pdf: 2234630 bytes, checksum: 58f05c473c3f6a722fbe1a3193162bc3 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents【目錄】
摘 要 I
ABSTRACT II
目 錄 IV
圖目錄 VI
表目錄 VII
壹、前 言 1
貳、往昔研究 5
一、蚊子的吸血與產卵行為 5
二、埃及斑蚊的產卵行為與防治策略 6
三、埃及斑蚊卵的黑化現象與耐旱能力 8
四、台灣鋏蠓卵和幼蟲生長環境與濕度的關係 10
參、材料與方法 11
一、埃及斑蚊卵黑化試驗 11
(一)供試蟲源 11
(二)產卵試驗方法 11
(三)埃及斑蚊卵內之過氧化酶活性試驗 13
二、台灣鋏蠓卵黑化與乾燥試驗 14
(一)供試蟲源 14
(二)台灣鋏蠓卵黑化試驗 15
(三)台灣鋏蠓卵耐乾燥試驗 16
(四)野外土壤含水量測定 17
三、資料處理與分析 18
肆、結 果 19
一、埃及斑蚊卵黑化試驗 19
(一)埃及斑蚊與白線斑蚊於鹽類水溶液的產卵偏好性 19
(二)埃及斑蚊於不同濃度鹽類水溶液的非選擇性產卵試驗 19
(三)埃及斑蚊於不同鹽類水溶液的產卵試驗 20
(四)不同鹽類對埃及斑蚊孵化率的影響 21
(五)埃及斑蚊卵內之過氧化酶活性試驗 22
二、台灣鋏蠓卵黑化與乾燥試驗 22
(一)台灣鋏蠓卵黑化試驗 (台灣鋏蠓於鹽類基質的產卵試驗) 22
(二)台灣鋏蠓卵於不同含水量基質的孵化試驗 23
(三)台灣鋏蠓卵的耐乾燥試驗 24
(四)野外土壤含水量測定 25
伍、討 論 27
一、鹽類水溶液對埃及斑蚊產卵行為以及卵外觀的影響 27
二、蚊卵耐旱的相關構造與黑化/硬化的關係 28
三、影響埃及斑蚊卵殼黑化/硬化的可能因素 29
四、台灣鋏蠓卵的耐旱能力與野外土壤含水量的關係 31
五、結論 33
陸、引用文獻 56
柒、附錄 63
【圖目錄】
圖一、埃及斑蚊產卵試驗之水杯擺放於養蟲籠的示意圖 36
圖二、野外土壤樣本之飽和含水量的測定方法 37
圖三、埃及斑蚊產於水杯邊濾紙上的卵 38
圖四、埃及斑蚊於鹽類水溶液中的平均產卵數與黑化率 39
圖五、埃及斑蚊卵內之過氧化酶活性 40
圖六、台灣鋏蠓的卵放置於不同介質上的情形 41
圖七、台灣鋏蠓卵於不同含水量的石膏盤上之孵化率與未乾扁比例 42
圖八、台灣鋏蠓卵在17℃與不同濕度環境下於四個月間之外觀改變 43
圖九、台灣鋏蠓卵在27℃與不同濕度環境下於四個月間之外觀改變 44
圖十、台灣鋏蠓卵於兩種溫度與濕度環境下放置四個月之孵化率變化45
 
【表目錄】
表一、埃及斑蚊與白線斑蚊在氯化鈉水溶液中的產卵反應 46
表二、埃及斑蚊於氯化鈉水溶液中的產卵反應 47
表三、埃及斑蚊於鹽類水溶液中的產卵黑化率 48
表四、埃及斑蚊於鹽類水溶液中的平均產卵數 49
表五、埃及斑蚊產於鹽類水溶液中之卵在二次水中的孵化率 50
表六、埃及斑蚊產於氯化鎂水溶液中之卵在二次水中的孵化率 51
表七、台灣鋏蠓卵於含鹽類洋菜膠培養基之黑化率與孵化率 52
表八、台中大坑風景區竹林土壤之土壤含水量 (1) 53
表九、台中大坑風景區竹林土壤之土壤含水量 (2) 54
表十、台中大坑風景區竹林土壤之土壤含水量 (3) 55
dc.language.isozh-TW
dc.subject硬化zh_TW
dc.subject黑化zh_TW
dc.subject耐旱能力zh_TW
dc.subject台灣鋏蠓zh_TW
dc.subject埃及斑蚊zh_TW
dc.subject卵殼zh_TW
dc.subjectdesiccation toleranceen
dc.subjectsclerotizationen
dc.subjectmelanizationen
dc.subjectegg chorionen
dc.subjectForcipomyia taiwanaen
dc.subjectAedes aegyptien
dc.title鹽類對埃及斑蚊和台灣鋏蠓卵黑化之影響與耐旱之研究zh_TW
dc.titleEffect of Salts on Egg Chorion Melanization and Desiccation Tolerance in Aedes aegypti and Forcipomyia taiwanaen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳文哲,許如君,黃旌集,蔡坤憲
dc.subject.keyword埃及斑蚊,台灣鋏蠓,卵殼,黑化,硬化,耐旱能力,zh_TW
dc.subject.keywordAedes aegypti,Forcipomyia taiwana,egg chorion,melanization,sclerotization,desiccation tolerance,en
dc.relation.page66
dc.identifier.doi10.6342/NTU201802643
dc.rights.note未授權
dc.date.accepted2018-08-07
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept昆蟲學研究所zh_TW
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved