Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22081
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李慧梅(Whei-May Lee)
dc.contributor.authorChia-Yin Chenen
dc.contributor.author陳佳吟zh_TW
dc.date.accessioned2021-06-08T04:01:28Z-
dc.date.copyright2018-08-08
dc.date.issued2018
dc.date.submitted2018-08-07
dc.identifier.citation1. Abdul-Wahab, S. A., Chin Fah En, S., Elkamel, A., Ahmadi, L. and Yetilmezsoy, K. (2015). A review of standards and guidelines set by international bodies for the parameters of indoor air quality. Atmospheric Pollution Research, 6(5), 751-767.
2. ACGIH, American Conference of Governmental Industrial Hygienists. (2018). Threshold Limit Values for Chemical Substances in the Work Environment. Available at:http://www.acgih.org/.
3. Almeida, S. M., Canha, N., Silva, A., Freitas, M. d. C., Pegas, P., Alves, C., Evtyugina, M. and Pio, C. A. (2011). Children exposure to atmospheric particles in indoor of Lisbon primary schools. Atmospheric Environment, 45(40), 7594-7599.
4. Alves, C. A., Evtyugina, M., Cerqueira, M., Nunes, T., Duarte, M. and Vicente, E. (2014). Volatile organic compounds emitted by the stacks of restaurants. Air Quality, Atmosphere & Health, 8(4), 401-412.
5. ANSI/ASHRAE (2004). Ventilation for Acceptable Indoor Air Quality. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1791 Tullie Circle NE, Atlanta, GA 30329. Available at:http://arco-hvac.ir/wp-content/uploads/2016/04/ASHRAE-62_1-2010.pdf
6. ATSDR, Agency for Toxic Substances and Disease Registry. (2018). US Public Health Service. Available at:https://www.atsdr.cdc.gov/about/orgstruct.html
7. Bell, M. L., Ebisu, K., Peng, R. D., Walker, J., Samet, J. M., Zeger, S. L. and Dominici, F. (2008). Seasonal and regional short-term effects of fine particles on hospital admissions in 202 US counties, 1999-2005. Am J Epidemiol, 168(11), 1301-1310.
8. Bonita, R., Beaglehole, R., Kjellström, T. and World Health Organization. (‎2006)‎. Basic epidemiology, 2nd ed. Geneva, World Health Organization.
9. Chao, C. Y. and Wong, K. K. (2002). Residential indoor PM10 and PM2.5 in Hong Kong and the elemental composition. Atmos Environ, 36(2), 265-277.
10. Chen, J. W., Wang, S. L., Hsieh, D. P., Yang, H. H. and Lee, H. L. (2012). Carcinogenic potencies of polycyclic aromatic hydrocarbons for back-door neighbors of restaurants with cooking emissions. Sci Total Environ, 417-418, 68-75.
11. Chen, Y., Ho, K. F., Ho, S. S., Ho, W. K., Lee, S. C., Yu, J. Z. and Sit, E. H. (2007). Gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) emissions from commercial restaurants in Hong Kong. J Environ Monit, 9(12), 1402-1409.
12. Cheng, S., Wang, G., Lang, J., Wen, W., Wang, X. and Yao, S. (2016). Characterization of volatile organic compounds from different cooking emissions. Atmospheric Environment, 145, 299-307.
13. Clougherty, J. E., Houseman, E. A. and Levy, J. I. (2011). Source apportionment of indoor residential fine particulate matter using land use regression and constrained factor analysis. Indoor Air, 21(1), 53-66.
14. Cohen, D. D., Crawford, J., Stelcer, E. and Bac, V. T. (2010). Characterisation and source apportionment of fine particulate sources at Hanoi from 2001 to 2008. Atmospheric Environment, 44(3), 320-328.
15. Contini, D., Genga, A., Cesari, D., Siciliano, M., Donateo, A., Bove, M. C. and Guascito, M. R. (2010). Characterisation and source apportionment of PM10 in an urban background site in Lecce. Atmospheric Research, 95(1), 40-54.
16. Dai, W., Zhong, H., Li, L., Cao, J., Huang, Y., Shen, M., Wang, L., Dong, J., Tie, X., Ho, S. S. H. and Ho, K. F. (2018). Characterization and health risk assessment of airborne pollutants in commercial restaurants in northwestern China: Under a low ventilation condition in wintertime. Sci Total Environ, 633, 308-316.
17. GSI Environmental Inc. GSI Chemical Properties Database. Available at: https://www.gsi-net.com/en/publications/gsi-chemical-database.html
18. Gwinn, M. R., Axelrad, D. A., Bahadori, T., Bussard, D., Cascio, W. E., Deener, K., Dix, D., Thomas, R. S., Kavlock, R. J. and Burke, T. A. (2017). Chemical Risk Assessment: Traditional vs Public Health Perspectives. Am J Public Health, 107(7), 1032-1039.
19. Ho, S. S. H., Yu, J. Z., Chu, K. W. and Yeung, L. L. (2006). Carbonyl Emissions from Commercial Cooking Sources in Hong Kong. Journal of the Air & Waste Management Association, 56(8), 1091-1098.
20. Hsu, C. Y., Chiang, H. C., Chen, M. J., Chuang, C. Y., Tsen, C. M., Fang, G. C., Tsai, Y. I., Chen, N. T., Lin, T. Y., Lin, S. L. and Chen, Y. C. (2017). Ambient PM2.5 in the residential area near industrial complexes: Spatiotemporal variation, source apportionment, and health impact. Sci Total Environ, 590-591, 204-214.
21. Huang, Y., Ho, S. S., Ho, K. F., Lee, S. C., Yu, J. Z. and Louie, P. K. (2011). Characteristics and health impacts of VOCs and carbonyls associated with residential cooking activities in Hong Kong. J Hazard Mater, 186(1), 344-351.
22. IARC, International Agency for Research on Cancer. (2010). Household use of solid fuels and high-temperature frying. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 95, Lyon, France, World Health Organization.
23. IARC, International Agency for Research on Cancer. Lyon, France, World Health Organization. Available at:https://monographs.iarc.fr/list-of-classifications-volumes/
24. IRIS. Integrated Risk Information System. US Environmental Protection Agency. Available at:https://www.epa.gov/iris
25. Kabir, E., Kim, K. H., Ahn, J. W., Hong, O. F. and Sohn, J. R. (2010). Barbecue charcoal combustion as a potential source of aromatic volatile organic compounds and carbonyls. J Hazard Mater, 174(1-3), 492-499.
26. Kampa, M. and Castanas, E. (2008) Human health effects of air pollution. Environ Pollut, 151(2), 362-367.
27. Khan, M. F., Hirano, K. and Masunaga, S. (2010). Quantifying the sources of hazardous elements of suspended particulate matter aerosol collected in Yokohama, Japan. Atmospheric Environment, 44(21-22), 2646-2657.
28. Ko, Y. C., Cheng, L. S., Lee, C. H., Huang, J. J., Huang, M. S., Kao, E. L., Wang, H. Z. and Lin, H. J. (2000). Chinese food cooking and lung cancer in women nonsmokers. Am J Epidemiol, 151(2), 140-147.
29. Kumar, R., Srivastava, P. K. and Srivastava, S. P. (1994). Leaching of heavy metals (Cr, Fe, and Ni) from stainless steel utensils in food simulants and food materials. Bull Environ Contam Toxicol, 53(2), 259-266.
30. Lee, J. B., Kim, K. H., Kim, H. J., Cho, S. J., Jung, K. and Kim, S. D. (2011). Emission rate of particulate matter and its removal efficiency by precipitators in under-fired charbroiling restaurants. ScientificWorldJournal, 11, 1077-1088.
31. Lee, T. and Gany, F. (2013). Cooking oil fumes and lung cancer: a review of the literature in the context of the U.S. population. J Immigr Minor Health, 15(3), 646-652.
32. Lewné, M., Johannesson, S., Strandberg, B. and Bigert, C. (2017). Exposure to Particles, Polycyclic Aromatic Hydrocarbons, and Nitrogen Dioxide in Swedish Restaurant Kitchen Workers. Ann Work Expo Health, 61(2), 152-163.
33. Li, Y. C., Qiu, J. Q., Shu, M., Ho, S. S. H., Cao, J. J., Wang, G. H., Wang, X. X. and Zhao, X. Q. (2018). Characteristics of polycyclic aromatic hydrocarbons in PM2.5 emitted from different cooking activities in China. Environ Sci Pollut Res Int, 25(5), 4750-4760.
34. Li, Y. C., Shu, M., Ho, S. S. H., Wang, C., Cao, J. J., Wang, G. H., Wang, X. X., Wang, K. and Zhao, X. Q. (2015). Characteristics of PM2.5 emitted from different cooking activities in China. Atmospheric Research, 166, 83-91.
35. Liu, K. F. R., Chen, W. R., Yeh, Y. C., Chang, L. W. and Shen, Y. S. (2013). The Use of Epidemiological Studies for Health Risk Assessment. International Journal of Environmental Science and Development, 355-359.
36. Lombardi-Boccia, G., Lanzi, S. and Aguzzi, A. (2005). Aspects of meat quality: trace elements and B vitamins in raw and cooked meats. Journal of Food Composition and Analysis, 18(1), 39-46.
37. Lung, S. C., Liu, C. H., Betsy, F. C., Wen, T. Y. and Huang, S. Y. (2010). Exposures and Potential Risks in the Neighborhoods of 5 Different Restaurants Emitting Particulate Polycyclic Aromatic Hydrocarbons. Epidemiology, 22(1), 90.
38. Mahmudur Rahman, M. and Kim, K. H. (2012). Release of offensive odorants from the combustion of barbecue charcoals. J Hazard Mater, 215-216, 233-242.
39. McDonald, J. D., Zielinska, B., Fujita, E. M., Sagebiel, J. C., Chow, J. C. and Watson, J. G. (2003). Emissions from Charbroiling and Grilling of Chicken and Beef. Journal of the Air & Waste Management Association, 53(2), 185-194.
40. Metayer, C., Wang, Z., Kleinerman, R. A., Wang, L., Brenner, A. V., Cui, H., Cao, J. and Lubin, J. H. (2002). Cooking oil fumes and risk of lung cancer in women in rural Gansu, China. Lung Cancer, 35(2), 111-117.
41. Nachman, K. E., Fox, M. A., Sheehan, M. C., Burke, T. A., Rodricks, J. V. and Woodruff, T. J. (2011). Leveraging Epidemiology to Improve Risk Assessment. The Open Epidemiology Journal, 4, 3-29.
42. NIOSH, National Institute for Occupational Safety and Health. (2016). NIOSH Pocket Guide to Chemical Hazards. Department of Health and Human Services. Centers for Disease Control and Prevention. Available at:https://www.cdc.gov/niosh/npg.
43. Nisbet, I. C. T. and LaGoy, P. K. (1992). Toxic Equivalency Factors (TEFs) for Polycyclic Aromatic Hydrocarbons (PAHs). Reg Toxicol Pharmacol, 16(3), 290-300.
44. NRC, National Research Council. (1983). Risk Assessment in the Federal Government: Managing the Process. Washington, DC, Committee on the Institutional Means for Assessment of Risks to Public Health, National Academy Press.
45. OSHA, Occupational Safety and Health Administration. (2017). Air Contaminants. 29 CFR 1910.1000 U.S. Department of Labor, Code of Federal Regulations. Available at:http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=9991.
46. Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K. and Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, JAMA, 287(9), 1132-1141.
47. See, S. W. and Balasubramanian, R. (2008). Chemical characteristics of fine particles emitted from different gas cooking methods. Atmospheric Environment, 42(39), 8852-8862.
48. See, S. W., Karthikeyan, S. and Balasubramanian, R. (2006). Health risk assessment of occupational exposure to particulate-phase polycyclic aromatic hydrocarbons associated with Chinese, Malay and Indian cooking. J Environ Monit, 8(3), 369-376.
49. Shen, G., Zhang, Y., Wei, S., Chen, Y., Yang, C., Lin, P., Xie, H., Xue, M., Wang, X. and Tao, S. (2014). Indoor/outdoor pollution level and personal inhalation exposure of polycyclic aromatic hydrocarbons through biomass fuelled cooking. Air Quality, Atmosphere & Health, 7(4), 449-458.
50. Singh, A., Chandrasekharan Nair, K., Kamal, R., Bihari, V., Gupta, M. K., Mudiam, M. K., Satyanarayana, G. N., Raj, A., Haq, I., Shukla, N. K., Khan, A. H. and Srivastava, A. K. (2016). Assessing hazardous risks of indoor airborne polycyclic aromatic hydrocarbons in the kitchen and its association with lung functions and urinary PAH metabolites in kitchen workers. Clin Chim Acta, 452, 204-213.
51. Susaya, J., Kim, K. H., Ahn, J. W., Jung, M. C. and Kang, C. H. (2010). BBQ charcoal combustion as an important source of trace metal exposure to humans. J Hazard Mater, 176(1-3), 932-937.
52. Taner, S., Pekey, B. and Pekey, H. (2013). Fine particulate matter in the indoor air of barbeque restaurants: elemental compositions, sources and health risks. Sci Total Environ, 454-455, 79-87.
53. Thorpe, A. and Harrison, R. M. (2008). Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci Total Environ, 400(1-3), 270-282.
54. Torkmahalleh, M. A., Goldasteh, I., Zhao, Y., Udochu, N. M., Rossner, A., Hopke, P. K. and Ferro, A. R. (2012). PM2.5 and ultrafine particles emitted during heating of commercial cooking oils. Indoor Air, 22(6), 483-491.
55. Torkmahalleh, M. A., Gorjinezhad, S., Unluevcek, H. S. and Hopke, P. K. (2017). Review of factors impacting emission/concentration of cooking generated particulate matter. Sci Total Environ, 586, 1046-1056.
56. USEPA, United States Environmental Protection Agency. (1991). Indoor Air Facts No. 4 Sick Building Syndrome. Available at: https://www.epa.gov/indoor-air-quality-iaq/indoor-air-facts-no-4-sick-building-syndrome
57. USEPA, United States Environmental Protection Agency. (2016). Human Health Risk Assessment. Available at:https://www.epa.gov/risk/human-health-risk-assessment
58. USEPA, United States Environmental Protection Agency. (2017). Summary of the Occupational Safety and Health Act. Available at: https://www.epa.gov/laws-regulations/summary-occupational-safety-and-health-act
59. USEPA, United States Environmental Protection Agency. (2018). Regulatory Information by Topic: Air. Available at: https://www.epa.gov/regulatory-information-topic/regulatory-information-topic-air#indoorair
60. Wang, G., Cheng, S., Wei, W., Wen, W., Wang, X. and Yao, S. (2015). Chemical Characteristics of Fine Particles Emitted from Different Chinese Cooking Styles. Aerosol and Air Quality Research, 15, 2357-2366.
61. WHO, World Health Organization. (2006). WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide, global update 2005, summary of risk assessment. Geneva, World Health Organization.
62. WHO, World Health Organization. (2017). Evolution of WHO air quality guidelines: past, present and future. Geneva, World Health Organization.
63. WHO, World Health Organization. (2018). Household air pollution and health. Geneva, World Health Organization. Available at: http://www.who.int/en/news-room/fact-sheets/detail/household-air-pollution-and-health
64. Xiang, Z., Wang, H., Stevanovic, S., Jing, S., Lou, S., Tao, S., Li, L., Liu, J., Yu, M. and Wang, L. (2017). Assessing impacts of factors on carbonyl compounds emissions produced from several typical Chinese cooking. Building and Environment, 125, 348-355.
65. Yu, K. P., Yang, K. R., Chen, Y. C., Gong, J. Y., Chen, Y. P., Shih, H. C. and Lung, S. C. (2015). Indoor air pollution from gas cooking in five Taiwanese families. Building and Environment, 93, 258-266.
66. Zanobetti, A., Franklin, M., Koutrakis, P. and Schwartz, J. (2009). Fine particulate air pollution and its components in association with cause-specific emergency admissions. Environ Health, 8, 58.
67. Zhang, Z., Zhao, Y., Zhou, M., Tao, P. and Li, R. (2017). Measurement of Indoor Air Quality in Chinese Charcoal Barbecue Restaurants. Procedia Engineering, 205, 887-894.
68. Zhao, Y., Hu, M., Slanina, S. and Zhang, Y. (2007). Chemical compositions of fine particulate organic matter emitted from Chinese cooking. Environ Sci Technol, 41(1), 99-105.
69. 方宗聖,四種餐飲業用餐空間室內空氣品質之研究,中原大學生物環境工程研究所碩士論文,2014。
70. 台北市政府環境保護局,環保新聞-防制燒烤店油煙異味污染臺北市環保局啟動專案稽查,2015。網址:https://www.epib.gov.taipei/News_Content.aspx?n=408C712E96A4EDF5&sms=1C03AF8610A7031E&s=5FED509C16030F3E
71. 朱品豪,室內燒烤產生空氣污染之研究,國立臺灣大學環境工程學研究所碩士論文,2017。
72. 江哲銘、李彥頤、周伯丞、邵文政,辦公空間室內裝修對空氣品質影響,第二屆中華民國室內設計學術研討會論文集,257-262,2000。
73. 行政院主計總處,105年受僱員工動向調查統計結果綜合分析,2017。
74. 行政院主計總處,105年家庭收支調查報告,2016。
75. 行政院衛生署,台灣一般民眾暴露參數彙編,2008。
76. 行政院衛生署疾病管制局,生物危害物質之公共衛生風險評估與風險管理研究,2006。
77. 行政院環境保護署,空氣污染排放量查詢系統TEDS9.0。網址:https://teds.epa.gov.tw/new_main2-0-1.htm
78. 行政院環境保護署,室內空氣品質標準,2012。
79. 行政院環境保護署,健康風險評估技術規範,2011。
80. 行政院環境保護署,應符合室內空氣品質管理法之第一批公告場所,2014。
81. 行政院環境保護署,應符合室內空氣品質管理法之第二批公告場所,2017。
82. 行政院環境保護署,環境資源資料庫。網址:https://erdb.epa.gov.tw/DataRepository/ReportAndStatistics/PublicNuisanceCase.aspx
83. 吳奉書,室內木炭燃燒產生空氣污染物之研究,國立臺灣大學環境工程學研究所碩士論文,2014。
84. 李成偉,六家位於高雄地區之美食街空氣中CO、CO2、TVOC及粉塵濃度之探討,大仁科技大學環境管理研究所碩士論文,2014。
85. 李佩珊,台灣細懸浮微粒(PM2.5)健康風險評估探究,國立臺灣大學環境工程學研究所碩士論文,2014。
86. 李宜勳,高雄市餐飲業醛酮化合物排放特徵,國立中山大學環境工程研究所碩士論文,2014。
87. 周函螢,燒烤煙霧中多環芳香族碳氫化合物氣、固相與粒徑分布特性之研究,輔仁大學公共衛生學系碩士論文,2008。
88. 周晏如、蔡朋枝、張振平、何雨芳、謝正悅、陳美如,油炸後食用油之酸價與空氣中多環芳香烴化合物濃度及毒性之關聯性調查,勞工安全衛生研究季刊。21(3),320-330,2013。
89. 陳品玲,流行病學概論,華杏出版社股份有限公司,2010。
90. 陳裕政,航空器引擎PAHs及VOCs排放特徵與維修及測試期間勞工暴露評估,國立成功大學環境醫學研究所碩士論文,2004。
91. 勞動部,勞工作業場所容許暴露標準,2018。
92. 楊婉君,餐廳工作人員油煙暴露評估研究,國立臺灣大學職業醫學與工業衛生研究所碩士論文,2007。
93. 溫志仁,餐飲油煙排放多環芳香烴化合物之減量效益,嘉南藥理科技大學環境工程與科學系碩士論文,2008。
94. 經濟部統計處,106年餐飲業營業額概況,2017。
95. 經濟部統計處,產業經濟統計簡訊,291,2017。
96. 衛生福利部統計處,居民體位及肥胖症狀—身高、體重、身體質量指數,2017。
97. 衛生福利部統計處,特定死因除外簡易生命表,2017。
98. 繆昀哲,燒烤餐飲油煙空氣污染物排放係數研究,國立臺灣大學環境工程學研究所碩士論文,2017。
99. 鍾育泰,餐飲業用餐區域室內空氣品質之探討,中華大學土木與工程資訊學系碩士論文,2007。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22081-
dc.description.abstract近年來國人飲食消費型態的轉變,外食人口比例大幅增加,而燒烤餐廳室內多為密閉空間,燒烤油煙易累積而造成室內空氣污染,且以餐廳工作人員為暴露高危險群,而消費族群亦蒙受其害。因此,本研究以台北市由廚師進行燒烤作業之6家日式串燒餐廳為對象,進行用餐區(外場)和燒烤作業區(內場)區域採樣以及燒烤作業人員個人採樣,依採樣結果探討餐廳工作人員及消費族群之健康風險危害程度。
由6家燒烤餐廳採樣結果顯示,內場PM2.5暴露濃度介於55.64 ~ 140.37 μg/m3,外場則介於8.32 ~ 85.24 μg/m3,內場顯著高於外場(p-value < 0.05);氣固相PAHs暴露濃度方面,以燒烤人員總PAHs暴露濃度最高(370.2 ~ 10453.8 ng/m3),而6家燒烤餐廳BaP毒性當量(BaPeq)平均暴露濃度,亦以燒烤人員為最高(4.99 ± 5.29 ng/m3),氣固相PAHs主要皆以氣相為主,其中又以Naphthalene為主要物種;醛類化合物以甲醛及乙醛為主要物種,內場甲醛暴露濃度介於5.20 ~ 12.61 ppb,乙醛則介於4.87 ~ 15.31 ppb,外場方面甲醛暴露濃度介於3.80 ~ 22.66 ppb,而乙醛則介於7.98 ~ 14.81 ppb之間;VOCs以苯、甲苯、乙苯及二甲苯為主要物種,內場平均總VOCs暴露濃度為15.25 ± 12.55 ppb,外場則為12.96 ± 8.16 ppb;金屬/非金屬元素部分,以鋁、硼、鐵、鉀、鎂及鋅為主要物種,6家燒烤餐廳內場金屬/非金屬元素平均濃度大小依序為鉀 > 鐵 > 鋁 > 鎂 > 硼 > 鋅 > 鋇 > 鉛 > 銅 > 錳 > 鉻,而外場大小則依序為鐵 > 鉀 > 鋁 > 鎂 > 硼 > 鋅 > 鋇 > 鉛 > 銅 > 錳 > 鉻。
由6家燒烤餐廳各污染物暴露濃度進行健康風險評估,致癌風險方面,6家燒烤餐廳平均總致癌風險以燒烤人員為最高(男性:6.99×10-6;女性:4.79×10-6),以消費族群為最低(男性:1.15×10-6;女性:7.49×10-7),6家燒烤餐廳總致癌風險普遍高於致癌風險標準值10-6,而各物種所占比例,以鉻為最高(33.9 ~ 46.9%),其次為BaPeq(21.2 ~ 42.4%)及甲醛(15.7 ~ 30.7%);非致癌風險方面,6家燒烤餐廳平均非致癌風險以燒烤人員為最高(男性:HI = 1.329;女性:HI = 0.988),以消費族群為最低(男性:HI = 0.014;女性:HI = 0.010),6家燒烤餐廳男性工作人員非致癌風險普遍高於非致癌風險標準值HI = 1,女性工作人員則接近標準值,表示對人體可能具有危害性,而各污染物所占比例,以乙醛為最高(35.5 ~ 41.1%),其次為甲醛(20.7 ~ 28.7%)。
由本研究結果顯示,6家燒烤餐廳各污染物暴露濃度均低於國內外勞工作業場所容許暴露標準,然6家燒烤餐廳致癌及非致癌風險皆達高風險情形,應予以正視,並考量加嚴規範標準,且各污染物濃度與其對應之風險值並無全然之相關性,污染物之毒理參數亦應列入考慮,而個人採樣污染物濃度及暴露風險程度普遍高於區域採樣,顯示以個人採樣方式能更準確評估烹飪人員實際暴露情形。
zh_TW
dc.description.abstractRecently, people change their consumption pattern. The proportion of the population who usually eat out has greatly increased. Indoor barbecue restaurants have become popular in Taiwan. Because of the enclosed space in the restaurants, the cooking fumes from indoor barbecue are easy to accumulate and result in the deterioration of indoor air quality. It is obvious that restaurants employees are at high health risk due to being exposed to the cooking fumes at the workplace in the long-term period and the consumers are also suffered from it. In this study, six charcoal barbecue restaurants in Taipei Area were targeted. The sampling and analysis of the restaurants include not only kitchen and dining areas but also personal exposure sampling of PAHs for chefs. Base on the sampling results, the health risks of the restaurants’ employees and the consumers were evaluated.
The results of sampling and analysis show that the concentrations of PM2.5 in kitchen are higher than those in dining area. The concentrations of PM2.5 in kitchen are between 55.64 to 140.37 µg/m3 and range from 8.32 to 85.24 µg/m3 in dining area. Of all the restaurants, PAHs are mainly partitioned on the gaseous phase. Naphthalene is the dominant species. The concentration of total PAHs was the highest for barbecue chefs (range from 370.2 to 10453.8 ng/m3). In addition, the BaP toxic equivalent concentration was the maximum for barbecue chefs (4.99 ± 5.29 ng/m3). Formaldehyde and acetaldehyde are the dominant species of the carbonyls. The formaldehyde concentrations range from 5.20 to 12.61 ppb and acetaldehyde concentrations are between 4.87 to 15.31 ppb in kitchen area. As for dining area, formaldehyde concentrations range from 3.80 to 22.66 ppb and acetaldehyde concentrations are within 7.98 and 14.81 ppb. Benzene, toluene, ethylbenzene and xylenes are the dominant species of VOCs. The average concentration of total volatile organic compounds is 15.25 ± 12.55 ppb and 12.96 ± 8.16 ppb in kitchen and dining area respectively. The elements are mainly composed of aluminum, boron, iron, potassium, magnesium and zinc. The average concentration of the elements in the kitchen in order is potassium > iron > aluminum > magnesium > boron > zinc > barium > lead > copper > manganese > chromium and iron > potassium > aluminum > magnesium > boron > zinc > barium > lead > copper > manganese > chromium in dining area.
As far as the risk assessment of cancer-inducing and non-cancer-inducing factors are concerned, the cancer risk of the six barbecue restaurants was the highest among the barbecue chefs (male: 6.99×10-6; female: 4.79×10-6) and the lowest for the consumers (male: 1.15×10-6; female: 7.49×10-7). The total cancer risk of the six barbecue restaurants is higher than the cancer risk standard value of 10-6. The proportion of chromium is the highest of all the species (33.9 ~ 46.9%) and follow by BaPeq (21.2 ~ 42.4%) and formaldehyde (15.7 ~ 30.7%). As for the hazard index, the barbecue chefs was also the highest (male: HI = 1.329; female: HI = 0.988) and the lowest for the consumers (male: HI = 0.014; female: HI = 0.010). The non-cancer risk of male staffs is greater than the non-cancer risk standard value HI = 1. The proportion of acetaldehyde is the highest of all the species (35.5 ~ 41.1%) and follow by formaldehyde (20.7 ~ 28.7%).
In this study, the concentrations of the six barbecue restaurants are lower than the permissible exposure limits (PELs). However, the cancer and non-cancer risks of the six barbecue restaurants are in high-risk situations, which should be concerned. Moreover, the concentration of each pollutant is not completely related to its corresponding risk. The toxicity of the pollutant should also be concerned. Furthermore individual sampling improved the accuracy of the exposure risk of the barbecue chefs.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:01:28Z (GMT). No. of bitstreams: 1
ntu-107-R05541208-1.pdf: 3297790 bytes, checksum: 88d0a9e43e52ce8472e6de32a30da5e8 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XI
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
1.3 研究內容與架構 2
第二章 文獻回顧 4
2.1 國內外室內空氣品質標準 4
2.2 燒烤餐飲空氣污染 13
2.3 中式餐飲空氣污染 20
2.4 健康風險評估方法 25
2.4.1 化學成分健康風險評估 25
2.4.2 流行病學健康風險評估 29
2.5 餐飲業空氣污染健康風險評估 30
第三章 研究材料與方法 40
3.1 餐廳選定與採樣規劃 40
3.1.1 樣本餐廳選定 40
3.1.2 採樣規劃 40
3.2 採樣分析材料及儀器設備 41
3.2.1 藥品與材料 41
3.2.2 儀器與設備 42
3.3 PM2.5採樣與分析 43
3.4 多環芳香烴(PAHS)採樣與分析 46
3.4.1 採樣方法 47
3.4.2 PAHs樣本分析 48
3.4.3 定性定量及內標準品添加分析之品質控制 49
3.5 醛類化合物採樣與分析 60
3.5.1 藥品配置 60
3.5.2 採樣與分析 60
3.5.3 定性定量及數據品保品管 62
3.5.4 醛類化合物濃度計算 66
3.6 揮發性有機物(VOCS)採樣與分析 66
3.6.1 採樣與分析 67
3.6.2 檢量線製作 69
3.6.3 揮發性有機物濃度計算 71
3.7 金屬/非金屬元素採樣與分析 72
3.7.1 藥品配置 72
3.7.2 微波消化與ICP-OES分析 72
3.7.3 金屬/非金屬元素濃度計算 73
3.8 健康風險評估架構與情境假設 74
3.8.1 危害辨識 74
3.8.2 劑量效應評估 76
3.8.3 暴露評估 78
3.8.4 風險特徵描述 82
第四章 結果與討論 84
4.1 燒烤餐廳基本特性分析 85
4.2 燒烤作業區及用餐區PM2.5暴露濃度 87
4.2.1 PM2.5手動(濾紙秤重)濃度 87
4.2.2 自動監測PM2.5濃度 90
4.3 燒烤作業區、用餐區及個人PAHS暴露濃度 94
4.4 燒烤作業區及用餐區醛類化合物暴露濃度 112
4.5 燒烤作業區及用餐區VOCS暴露濃度 117
4.6 燒烤作業區及用餐區金屬/非金屬元素暴露濃度 123
4.7 健康風險評估 130
4.7.1 致癌風險評估 130
4.7.2 非致癌風險評估 137
第五章 結論與建議 143
5.1 結論 143
5.2 建議 145
參考文獻 146
附錄 A 6家燒烤餐廳非致癌風險危害商數(HQ) 154
附錄 B口試委員意見 159
dc.language.isozh-TW
dc.title餐飲業燒烤煙霧暴露之健康風險評估zh_TW
dc.titleHealth Risk Assessment of Oil Fumes from Indoor Barbecue Restaurantsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee余國賓,黃小林
dc.subject.keyword燒烤餐飲,烹飪油煙,多環芳香烴,勞工作業場所容許暴露標準,健康風險評估,zh_TW
dc.subject.keywordbarbecue restaurants,cooking fumes,polycyclic aromatic hydrocarbons (PAHs),permissible exposure limits (PELs),health risk assessment,en
dc.relation.page162
dc.identifier.doi10.6342/NTU201802292
dc.rights.note未授權
dc.date.accepted2018-08-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
3.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved