Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22077
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉雅瑄(Ya-Hsuan Liou)
dc.contributor.authorHsin-Hung Chouen
dc.contributor.author周信宏zh_TW
dc.date.accessioned2021-06-08T04:01:15Z-
dc.date.copyright2018-08-18
dc.date.issued2018
dc.date.submitted2018-08-07
dc.identifier.citation[1] Liu, B.; Aydil, E. S. J. Am. Chem. Soc. 2009, 131, 3985−3990.
[2] Wisnet, A.; Betzler, S. B. Zucker, R. V.; Dorman, J. A.; Wagatha, P.; Matich, S.; Okunishi, E.; Schmit-Mende, L.; Scheu, C. J. Cryst. Growth. 2014, 14, 4658-4663.
[3] Fujishima, A.; Honda, K. Nature. 1972, 37, 238.
[4] Tryk, D. A.; Fujishima, A.; Honda, K. Electrochim. Acta. 2000, 45, 2363.
[5] Hwu, Y.; Yao, Y. D.; Cheng, N. F.; Tung, C. Y.; Lin, H. M. Nanostruct. Mater. 1997, 9, 355.
[6] Gribb, A. A.; Banfield, J. F. Am. Mineral. 1997, 82, 717.
[7] Verma, R.; Gangwarbc, J.; Srivastava, A. K. RSC. Adv. 2017, 7, 44199.
[8] Byranvanda, M. M.; Kharata, A. N.; Fatholahib, L.; Beiranvandc, Z. M. J. nano. 2013, JNS 3, 1-9.
[9] Venkatachalam, N.; Palanichamy, M.; Murugesan, V. Mater. Chem. Phys. 2007, 104, 2-3, 454-459.
[10] Klein, L. C. Mater. Manu. Rev. 2007, 9, 1007.
[11] Sarah, H.; Suresh, C. P. Sol-Gel Deriv. Materials Technol. 2017, 271-283
[12] Colomer, J. F.; Stephan, C.; Lefrant, S.; Tendeloo, G. V.; Willems, I.; Konya, Z.; Fonseca, A.; Laurent, C.; Nagy, J. B. Chem. Phys. Lett. 2000, 317, 83-89.
[13] Jason, K. V.; Amy, B.; Krystal, E.; John, P. J. Chem. Educ. 2010, 87 (10), 1102-1104
[14] Choucair, M.; Thordarson, P.; Stride, J. A. Nature. Nano. 2009, 4, 30-33.
[15] Pei, Z.; Xuping, L.; Bin, W.; Hans, A.; Junji, Z.; Liangliang, Z. Chem. Sci., 2018, 9, 1323-1329
[16] Matero, R.; Rahtu, A.; Ritala, M. Chem. Mater. 2001, 13, 4506-4511.
[17] Mukhopadhyay, A. B.; Musgrave, C. B.; Sanz, J. F. J. Am. Chem. Soc. 2008, 130, 11996-12006
[18] Park, B. -E.; Oh, I. -K.; Lee, C. W.; Lee, G.; Shin, Y. -H.; Lansalot-Matras, C.; Noh, W.; Kim, H.; Lee, H. -B. -R. J. Phys. Chem. C 2016, 120, 5958-5967.
[19] Ru, C.; Lei, M.; Haoliang, C.; Eiji, N.; Chengyan, L.; Toru, A.; Yuji, I.; Masaki, T.; Sakae, T. J. Mater. Chem. A, 2015, 3, 3726-3738
[20] Born, M.; Oppenheimer, R. Ann. Phys. 1927, 389, 20, 457-484.
[21] Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, 3B, B864-B871.
[22] Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, 4A, A1133-A1138.
[23] Perdew, J. P. AIP, 2001; vol. 577, 1-20.
[24] Paier, J.; Marsman, M.; Hummer, K.; Kresse, G.; Gerber, I. C.; Angyan, J. G. J. chem. Phys. 2006, 124, 15, 154709.
[25] Kresse, G.; Joubert, D. Phys. Rev. B. 1999, 59, 1758.
[26] Kresse, G.; Hafner, J. Phys. Rev. B. 1993, 47, 558-561.
[27] Kresse, G.; Hafner, J. Phys. Rev. B. 1994, 49, 14251-14269.
[28] Kresse, G.; Furthmüller, J. Phys. Rev. B. 1996, 54, 11169.
[29] Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15-50.
[30] Goldschmidt, V. atlas der krystallformen, Band VII, Pyroaurit-Rutile; Carl Winters Universitatsbuchhandlung: Heidelberg, 1913; 172.
[31] Kao, L. C.; Lin, C. J.; Dong, C. L.; Chen, C. L.; Liou, Y. H. Chem. Commun. 2015, 51, 6361.
[32] Kao, L. C.; Liou, Y. H.; Dong, C. L.; Yeh, P. H.; Chen, C. L. ACS Sustainable Chem. Eng. 2016, 4, 210-218.
[33] Lin, C. J.; Liao, S. J.; Kao, L. C.; Liou, Y. H. Journal of Hazardous Materials. 2015, 291, 9-17
[34] Hardcastle, T. P.; Brydson, R. M. D.; Livi, K. J. T.; Seabourne, C. R.; Scott, A. J. J. Phys. Conference series. 2012, 371(1), 012059.
[35] Valentin, C. D.; Tilocca, A. Selloni, A.; Beck, T. J.; Klust, A.; Batzill, M.; Losovyj, Y.; Diebold, U. J. Am. Chem. Soc. 2005, 127, 9895-9903.
[36] Kowalski, P. M.; Meyer, B.; Marx, D. Phys. Rev. B. 2009, 79, 115410
[37] Cheng, J.; Sprik, M. J. Chem. Theory Comput. 2010, 6, 880-889.
[38] Sun, C.; Liu, L. M.; Selloni, A.; Lu, G. Q.; Smith, S. C. J. Mater. Chem. 2010, 20, 10319-10334.
[39] Barnard, A. S.; Curtiss, L. A. Nano Lett. 2005, 5, 7, 1261-1266.
[40] Barnard, A. S.; Zapol, P.; Curtiss, L. A. Surf. Sci. 2005, 58,2173.
[41] Barnard, A. S.; Zapol, P.; Curtiss, L. A. J. Chem. Theory Comput. 2005, 1, 107-116.
[42] Saponjic, Z. V.; Dimitrijevic, N.; Tiede, D.; Goshe, A.; Zuo, X.; Chen, L.; Barnard, A. S.; Zapol, P.; Curtiss, L. A.; Rajh, T. Adv. Mater. 1999, 17, 965.
[43] Diebold, U. Surf, Sci. Rep. 2003, 48, 53-229.
[44] Yin, X. -L.; Calatayud, M.; Qiu, H.; Wang, Y.; Birkner, A.; Minot, C.; Woll, Ch. ChemPhysChem. 2008, 9, 253.
[45] Leconte, J.; Markovits, A.; Skalli, M. K.; Minot, C.; Belmajdoub, A. Surf. Sci. 2002, 497, 194.
[46] Moulik, S. R.; Ghatak, A.; Ghosh, B. Surf. Sci. 2016, 651, 175-181.
[47] Calatayud, M.; Minot, C. J. Phys. Chem. C 2009, 113, 12186-12194.
[48] Islam, M. M.; Calatayud, M.; Pacchioni, G. J. Phys. Chem. C 2011, 115, 6809-6814.
[49] Xu, C.; Jiang, Y.; Yi, D.; Sun, S.; Yu, Z. J. Appl. Phys. 2012, 111, 063504.
[50] Li, D.; Soberanis, F.; Fu, J.; Hou, W.; Wu, J.; Kisailus, D. Cryst. Growth Des. 2013, 13, 422-428.
[51] Kronawitter, C. X.; Kapilashrami, M.; Bakke, J. R.; Bent, S. F.; Chuang, C. -H.; Pong, W. -F.; Guo, J.; Vayssieres, L.; Mao, S. S. Phys. Rev. B. 2012, 85, 125109.
[52] Testino, A.; Bellobono, I. R.; Buscaglia, V.; Canevali, C.; D’Arienzo, M.; Polizzi, S.; Scotti, R.; Morazzoni, F. J. Am. Chem. Soc. 2007, 129, 3564-3575.
[53] Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J. Nano Lett. 2007, 7, 69-74.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22077-
dc.description.abstract由於單一方向之單結晶半導體奈米柱在光電設備中的潛在應用性,它的合成方式實為一種具有前瞻性的技術,例如:染料敏化太陽能電池(DSSCs)。前人的研究中提出一種簡單快速的熱合成方式,利用導電玻璃(FTO)作為基材,合成出只延著(001)面生長,單一方向之單結晶金紅石相二氧化鈦奈米柱。在此熱合成方法的框架之下,陸續有許多研究提出其奈米柱可能的成長機制,然而至今仍有非常多尚未被釐清的地方。
在此研究中,我們以局部密度泛函理論,利用電腦模擬軟體Vienna ab-initio simulation package (VASP)去探討前述熱合成實驗中的二氧化鈦奈米柱成長機制。模擬過程中根據原子層沈積理論(ALD)建構金屬前驅物與水的吸附模型,進而研究吸附物在二氧化鈦金紅石相結晶上吸附的差異。由於表面型態對於吸附的差異影響重大,模擬中我們建構了五個表面,分別是(001),(100),(101),(110)及(111)面,放上鈦的來源:四氯化鈦以及氧的來源:水,去模擬二氧化鈦奈米柱之成長過程,從過程中判斷其中分子是否有吸附的選擇性。本研究根據理論化學的方法尋找主導二氧化鈦奈米柱成長的機制,從結果中我們發現(001)面有著高度的來源獲得可能性,進而解釋二氧化鈦奈米柱只延著(001)方向生長的原因。我們認為了解單一方向之單結晶二氧化鈦奈米柱的成長機制有助於提升往後鈦材料在未來的應用,且提供了一個以理論化學去印證實驗的例子。
zh_TW
dc.description.abstractSynthesis of aligned single-crystalline semiconductor nanorods is promising nowadays because of their potential applications in photovoltaic devices, for example in dye-sensitized solar cells (DSSCs). For DSSCs, a facile hydrothermal method was developed to grow oriented, single-crystalline rutile TiO_2 nanorod films on transparent conductive fluorine-doped tin oxide (FTO) substrates. After that, a growth model of rutile TiO_2 nanorod was proposed, but still many points in the mechanism are unclear.
In this study, we try to face the growth mechanism with computer modeling with simulating software, Vienna ab-initio simulation package (VASP), which is based on density functional theory (DFT). And the simulation mode was depended on atomic layer deposition (ALD) theory. The metal precursor and water adsorbing preference are different depending on different surface of metal oxide. Because the surface morphology plays an important role in adsorptions, five different termination of rutile: (001), (100), (101), (110) and (111) were built and be simulated the result of adding precursor of titanium and water on different surfaces to be checked if there are selectivity or not. This research is based on theoretical methods and focus on elucidating key factors of the TiO2 nanorods growth mechanism. According to the simulation results, (001) surface gains high preference of growth. Understanding of growth of oriented TiO2 nanorods and mechanism are helpful to increase performance of titanium applications in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:01:15Z (GMT). No. of bitstreams: 1
ntu-107-R05224210-1.pdf: 3239019 bytes, checksum: ee9d69851c9005e91fbecb7ce86e8061 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsACKNOWLEDGEMENT i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES viii
LIST OF TABLES viii
Chapter 1 Introduction 1
1.1 Titanium dioxide 1
1.1.1 Properties 2
1.1.2 Morphology 2
Chapter 2 Literature review 4
2.1 Synthesis method 4
2.1.1 Sol-gel process 4
2.1.2 Chemical vapor deposition 5
2.1.3 Solvothermal method 6
2.1.4 Hydrothermal synthesis 7
Chapter 3 Method 10
3.1 Theory 11
3.2 Functional 13
3.3 Theorem of Bloch 16
3.4 Plane waves 17
3.5 Brillouin zone 18
3.6 Pseudopotentials 18
3.7 Supercell 19
3.8 Types of modeling software 20
3.9 Input and output files of VASP 21
3.10 Computer details 22
3.10.1 Bulk model 23
3.10.2 Surface model 24
3.10.3 Slab model 25
3.10.4 Surface model 26
3.10.5 Adsorption energy 26
3.10.6 Adsorption model 27
Chapter 4 Results and discussion 30
4.1 SEM and TEM 30
4.2 Surface energy of TiO2 31
4.3 Adsorption of water 32
4.3.1 First water molecular model 33
4.3.2 Second water molecular model 38
4.4 Adsorption of TiCl4 43
4.4.1 Molecular model 44
4.4.2 Dissociation model 46
4.4.3 Results of five surfaces of TiCl4 adsorption 49
4.5 Adsorption of water on surface with TiCl4 52
4.6 Discussions 57
Chapter 5 Conclusions 60
REFERENCE 62
dc.language.isoen
dc.subject奈米柱zh_TW
dc.subject模擬計算zh_TW
dc.subject局部密度泛函理論zh_TW
dc.subject晶體表面zh_TW
dc.subject二氧化鈦zh_TW
dc.subjectsurfacesen
dc.subjectTiO2en
dc.subjectsimulationen
dc.subjectDFTen
dc.subjectnanorodsen
dc.title以局部密度泛函理論探討二氧化鈦奈米柱的生長zh_TW
dc.titleAn Investigation of TiO2 Aligned Nanorods Growth:
A View by Density Functional Theory
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡景堯(Ching-Yao Hu),林進榮(Chin-Jung Lin)
dc.subject.keyword二氧化鈦,奈米柱,晶體表面,局部密度泛函理論,模擬計算,zh_TW
dc.subject.keywordTiO2,nanorods,surfaces,DFT,simulation,en
dc.relation.page65
dc.identifier.doi10.6342/NTU201802641
dc.rights.note未授權
dc.date.accepted2018-08-08
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved