請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22076完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉扶東(Fu-Tong Liu) | |
| dc.contributor.author | Yuan-Hsin Lo | en |
| dc.contributor.author | 羅婉心 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:01:11Z | - |
| dc.date.copyright | 2021-02-23 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-11-30 | |
| dc.identifier.citation | Abdou AG, Elwahed MG, Serag El-Dien MM, Eldien DS. Immunohistochemical expression of MCM2 in nonmelanoma epithelial skin cancers. Am J Dermatopathol 2014;36:959-64. Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 2003;278:1910-14. Bornens M. The centrosome in cells and organisms. Scienc 2012;335(6067):422-6. Chan JR, Blumenschein W, Murphy E, Diveu C, Wiekowski M, Abbondanzo S, et al. IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J Exp Med 2006;203:2577-87. Charruyer A, Fong S, Vitcov GG, Sklar S, Tabernik L, Taneja M, et al. Brief report: Interleukin-17A-dependent asymmetric stem cell divisions are increased in human psoriasis: a Mechanism underlying benign hyperproliferation. Stem Cells 2017;35:2001-7. Chiang MF, Yang SY, Lin IY, Hong JB, Lin SJ, Ying HY, et al. Inducible deletion of the Blimp-1 gene in adult epidermis causes granulocyte-dominated chronic skin inflammation in mice. Proc Natl Acad Sci USA 2013;110:6476-6481. Choy DF, Hsu DK, Seshasayee D, Fung MA, Modrusan Z, Martin F, et al. Comparative transcriptomic analyses of atopic dermatitis and psoriasis reveal shared neutrophilic inflammation. J Allergy Clin Immunol 2012;130:1335-43. Conduit PT, Wainman A, Raff JW. Centrosome function and assembly in animal cells. Nat Rev Mol Cell Biol 2015;16:611-24. Cummings RD, Liu FT, Vasta GR. Galectins. In: Varki A, Cummings RD, Esko JD, et al., editors. Essentials of Glycobiology [Internet]. 3rd edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2017. Chapter 36. Delaval B, Doxsey SJ. Pericentrin in cellular function and disease. J Cell Biol 2010;188:181-90. Fu J, Hagan IM, Glover DM. The centrosome and its duplication cycle. Cold Spring Harb Perspect Biol 2015;7:a015800. Ha H, Wang H, Pisitkun P, Kim J, Tassi I, Tank W et al. IL-17 drives psoriatic inflammation via distinct, target cell-specific mechanisms. Proc Natl Acad Sci USA 2014;111:E3422-E3431. Hadari YR, Arbel-Goren R, Levy Y, Amsterdam A, Alon R, Zakut R et al. Galectin-8 binding to integrins inhibits cell adhesion and induces apoptosis. J Cell Sci 2000;113:2385-97. Hawkes JE, Yan BY, Chan TC, Krueger JG. Discovery of the IL-23/IL-17 signaling pathway and the treatment of psoriasis. J Immunol 2018;201:1605-13. Jia HY, Shi Y, Luo LF, Jiang G, Zhou Q, Xu SZ et al. Asymmetric stem-cell division ensures sustained keratinocyte hyperproliferation in psoriatic skin lesions. Int J Mol Med 2016;37:359-68. Kim J, Krueger JG. Highly effective new treatments for psoriasis target the IL-23/type 17 T cell autoimmune axis. Annu Rev Med 2017;68:255-69. Krueger JG, Krane JF, Carter DM, Gottlieb AB. Role of growth factors, cytokines, and their receptors in the pathogenesis of psoriasis. J Invest Dermatol 1990;94:135S-40S. Lai Y, Li D, Li C, Muehleisen B, Radek KA, Park HJ et al. The antimicrobial protein REG3A regulates keratinocyte proliferation and differentiation after skin injury. Immunity 2012;37:74-84. Langley RG, Elewski BE, Lebwohl M, Reich K, Griffiths CE, Papp K et al. Secukinumab in plaque psoriasis – results of two phase 3 trials. N Engl J Med 2014;371:326-38. Lawo S, Hasegan M, Gupta GD, Pelletier L. Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat Cell Biol 2012;14:1148-58. Lebwohl M, Strober B, Menter A, Gordon K, Weglowska J, Puig L et al. Phase 3 studies comparing brodalumab with ustekinumab in psoriasis. N Engl J Med 2015;373:1318-28. Lechler T, Fuchs E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 2005;437:275–280. Lee E, Trepicchio WL, Oestreicher JL, Pittman D, Wang F, Chamian F et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med 2004;199:125-30. Levin AA, Gottlieb AB. Specific targeting of interleukin-23p19 as effective treatment for psoriasis. J Am Acad Dermatol 2014;70:555-61. Levy Y, Arbel-Goren R, Hadari YR, Eshhar S, Ronen D, Elhanany E et al. Galectin-8 functions as a matricellular modulator of cell adhesion. J Biol Chem 2001;276:31285-95. Lim HC, Yu CY, Jou TS. Galectin-8 regulates targeting of Gp135/podocalyxin and lumen formation at the apical surface of renal epithelial cells. FASEB J 2017;31:4917-27. Liu FT, Patterson RJ, Wang JL. Intracellular functions of galectins. Biochim Biophys Acta 2002;1572:263-73. Liu FT, Rabinovich GA. Galectins as modulators of tumour progression. Nat Rev Cancer 2005;5:29-41. Lundgren DH, Hwang SI, Wu L, Han DK. Role of spectral counting in quantitative proteomics. Expert Rev Proteomics 2010;7:39-53. Lynde CW, Poulin Y, Vender R, Bourcier M, Khalil S. Interleukin 17A: toward a new understanding of psoriasis pathogenesis. J Am Acad Dermatol 2014;71:141-50. McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 family of cytokines in health and disease. Immunity 2019;50:892-906. McKay IA, Leigh IM. Altered keratinocyte growth and differentiation in psoriasis. Clin Dermatol 1995;13:105-14. Mennella V, Keszthelyi B, McDonald KL, Chhun B, Kan F, Rogers GC, et al. Subdiffreaction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nat Cell Biol 2012;14:1159-68. Metz C, Döger R, Riquelme E, Cortés P, Holmes C, Shaughnessy R, et al. Galectin-8 promotes migration and proliferation and prevents apoptosis in U87 glioblastoma cells. Biol Res 2016;49:33. Monin L, Gaffen SL. Interleukin 17 family cytokines: signaling and therapeutic implications. Cold Spring Harb Perspect Biol 2018;10:1028522. Mueller W, Hermann B. Cyclosporin A for psoriasis. N Engl J Med 1979;301:555. Papp KA, Leonardi CL, Blauvelt A, Reich K, Korman NJ, Ohtsuki M et al. Ixekizumab treatment for psoriasis: integrated efficacy analysis of three double-blinded, controlled studies (UNCOVER-1, UNCOVER-2, UNCOVER-3). Br J Dermatol 2018;178(3):674-81. Prigent C, Dimitrov S. Phosphorylation of serine 10 in histone H3, what for? J Cell Sci 2003;116:3677-85. Rizzo HL, Kagami S, Phillips KG, Kurtz SE, Jacques SL, Blauvelt A. IL-23-mediated psoriasis-like epidermal hyperplasia is dependent on IL-17A. J Immunol 2011;186:1495-502. Rouvier E, Luciani MF, Mattéi MG, Denizot F, Golstein P. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol 1993;150:5445-56. Saba R, Wolk K. Role of IL-23, IL-17, and IL-22 in psoriasis. In: Quesniaux V, Ryffel B, Padova F. editors, IL-17, IL-22 and their producing cells: role in inflammation and autoimmunity. Springer, Basel 2013:287-304. Sauer G, Körner R, Hanisch A, Ries A, Nigg EA, Sillijé HHW. Proteome analysis of the human mitotic spindles. Mol Cell Proteomics 2005;4:35-43. Shin JW, Kim YK, Cho KH. Minichromosome maintenance protein expression according to the grade of atypism in actinic keratosis. Am J Dermatopathol 2010;32:794-8. Stoops EH, Hull M, Olesen C, Mistry K, Harder JL, Rivera-Molina F et al. The periciliary ring in polarized epithelial cells is a hot spot for delivery of the apical protein gp135. J Cell Biol 2015;211:287-94. Tang CJ, Fu RH, Wu KS, Hsu WB, Tang TK. CPAP is a cell-cycle regulated protein that controls centriole length. Nat Cell Biol 2009;11:825-31. Weinstein GD, McCullough JL, Ross PA. Cell kinetic basis for pathophysiology of psoriasis. J Invest Dermatol 1985;85:579-83. Williams SE, Beronja S, Pasolli HA, Fuchs E. Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature 2011;470:353-358. Woodruff JB, Wueseke O, Hyman AA. Pericentriolar material structure and dynamics. Philos Trans R Soc Lond B Biol Sci 2014;369:20130459. Wu L, Chen X, Zhao J, Martin B, Zepp JA, Ko JS et al. A novel IL-17 signaling pathway controlling keratinocyte proliferation and tumorigenesis via the TRAF4-ERK5 axis. J Exp Med 2015;212:1571-87. Yoshizawa-Sugata N and Masai H. Cell cycle synchronization and flow cytometry analysis of mammalian cells. Methods Mol Biol. 2014;1170:279-93. Young A, Dictenberg JB, Purohit A, Tuft R, Doxsey SJ. Cytoplasmic dynein-mediated assembly of pericentrin and γ tubulin onto centrosomes. Mol Biol Cell 2000;11:2047-56. Zheng Y, Denilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 2007;445:648-51. Zick Y, Eisenstein M, Goren RA, Hadari YR, Levy Y, Ronen D. Role of galectin-8 as a modulator of cell adhesion and cell growth. Glycoconjugate J 2002;19:517-26. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22076 | - |
| dc.description.abstract | 乾癬是一種慢性皮膚發炎性疾病,主要特徵為非常明顯的發炎反應與顯著增厚的表皮層,它的產生受到介白質23與輔助型T細胞17的調控。在本研究中,我們發現半乳糖凝集素8在乾癬病人皮膚病灶的表皮層顯著增加,於皮內注射介白質23的乾癬小鼠模型也有觀察到半乳糖凝集素8的增加,以介白質17A刺激人類角質細胞也可以誘導半乳糖凝集素8呈現與刺激強度相對應地增加。在乾癬動物模型中,半乳糖凝集素8基因剔除鼠的角質細胞增生較不明顯。角質細胞中的半乳糖凝集素8多寡與細胞的增生能力呈現正相關,半乳糖凝集素8基因剔除的角質細胞於細胞同步實驗中,從有絲分裂期進展到生長期的速度較緩慢。細胞免疫螢光染色與細胞裂解液轉染都顯示半乳糖凝集素8會表現在有絲分裂器上。藉由免疫沈澱法與蛋白質質譜法分析,我們發現半乳糖凝集素8於有絲分裂時會與α微管蛋白有交互作用,進而於免疫螢光染色下發現半乳糖凝集素8缺乏的細胞其有絲分裂器上的中心粒周圍蛋白的結構較鬆散且有絲分裂微管束較短。綜合上述發現,我們結論認為在乾癬的皮膚角質細胞中,半乳糖凝集素8會被調控增加,於有絲分裂時經由與α微管蛋白的交互作用,維持有絲分裂器上中心粒結構的完整,進而正向調控角質細胞的增生。 | zh_TW |
| dc.description.abstract | Psoriasis is a chronic inflammatory skin disease that develops under the influence of the interleukin-23/Th17 axis and is characterized by intense inflammation and prominent epidermal hyperplasia. Here, we demonstrate that galectin-8, a β–galactoside-binding lectin, is upregulated in the epidermis of human psoriatic skin lesions, as well as a mouse model of psoriasis induced by intradermal IL-23 injections, and in IL-17A-treated keratinocytes. We show keratinocyte proliferation is less prominent in galectin-8-knockout mice following intradermal IL-23 treatment compared to wild type mice. In addition, we show that galectin-8 levels in keratinocytes are positively correlated with the ability of cells to proliferate, and that transition from mitosis into G1 phase is delayed in galectin-8-knockout HaCaT cells after cell cycle synchronization and release. We demonstrate by immunofluorescence staining and immunoblotting the presence of galectin-8 within the mitotic apparatus. We reveal by co-immunoprecipitation and mass spectrometry analysis that α-tubulin interacts with galectin-8 during mitosis. Finally, we show, in the absence of galectin-8, pericentrin compactness is lessened and mitotic microtubule length is shortened, as demonstrated by immunofluorescence staining. We conclude that galectin-8 is upregulated in psoriasis and contributes to the hyperproliferation of keratinocytes by maintaining centrosome integrity during mitosis through interacting with α-tubulin. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:01:11Z (GMT). No. of bitstreams: 1 U0001-2811202011433800.pdf: 8619207 bytes, checksum: d2112271d8138f32792289f82e5c6604 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | Table of Content
口試委員會審定書 i 致謝 i 中文摘要 ii Abstract iii CHAPTER 1. Introduction 1 1.1 Psoriasis 1 1.2 Interleukin-17 2 1.3 Galectin-8 3 CHAPTER 2. Aims 5 CHAPTER 3. Materials and Methods 6 3.1 Microarray analysis of human skin samples 6 3.2 Human skin samples and analysis 6 3.3 Mouse experiment 7 3.4 Real-time quantitative PCR 7 3.5 H E and immunohistochemical staining 8 3.6 Immunofluorescence staining 9 3.7 Cell culture and treatment 9 3.8 Generation of galectin-8-knockout stable cells and galectin-8-overexpressing stable cells (HaCaT, NHEK) 10 3.9 Western blotting, lactose pull-down assay 10 3.10 Cell proliferation assay (SRB assay) 11 3.11 Cell cycle synchronization and analysis by flow cytometry 12 3.12 Isolation of mitotic apparatus 12 3.13 In-gel digestion and mass spectrometry analysis 12 3.14 Co-immunoprecipitation 13 3.15 Statistical analysis 14 CHAPTER 4. Results 15 4.1 Galectin-8 is over-expressed in psoriatic epidermis 15 4.2 Galectin-8 is responsible for keratinocyte hyperproliferation in psoriasis 15 4.3 Galectin-8 levels in keratinocytes are positively correlated with proliferation ability 17 4.4 Cell cycle progression in keratinocytes correlates positively with galectin-8 level 18 4.5 Galectin-8 is enriched in mitotic apparatus and associates with α-tubulin 19 4.6 Galectin-8 maintains the integrity of the centrosome and mitotic spindles during mitosis 21 CHAPTER 5. Discussion 22 5.1 The role of galectin-8 in keratinocyte proliferation 22 5.2 Galectin-8 regulates the structure of centrosome in mitosis 24 5.3 Galectin-8 takes part in asymmetric cell division induced by IL-17A in psoriasis 25 5.4 Summary 26 References 28 Figures 34 Table 71 Appendix 72 | |
| dc.language.iso | en | |
| dc.subject | α微管蛋白 | zh_TW |
| dc.subject | 乾癬 | zh_TW |
| dc.subject | 角質細胞 | zh_TW |
| dc.subject | 半乳糖凝集素8 | zh_TW |
| dc.subject | 細胞分裂 | zh_TW |
| dc.subject | 介白質17A | zh_TW |
| dc.subject | Psoriasis | en |
| dc.subject | α-tubulin | en |
| dc.subject | IL-17A | en |
| dc.subject | Mitosis | en |
| dc.subject | Galectin-8 | en |
| dc.subject | Keratinocyte | en |
| dc.title | 半乳糖凝集素-8在乾癬致病機轉中於角質細胞的影響 | zh_TW |
| dc.title | The contribution of galectin-8 to the pathogenesis of psoriasis through keratinocytes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0002-3727-9696 | |
| dc.contributor.oralexamcommittee | 唐堂(Tang Tang),繆希椿(Shi-Chuen Miaw),顧家綺(Chia-Chi Ku),林頌然(Sung-Jan Lin) | |
| dc.subject.keyword | 乾癬,角質細胞,半乳糖凝集素8,細胞分裂,介白質17A,α微管蛋白, | zh_TW |
| dc.subject.keyword | Psoriasis,Keratinocyte,Galectin-8,Mitosis,IL-17A,α-tubulin, | en |
| dc.relation.page | 72 | |
| dc.identifier.doi | 10.6342/NTU202004370 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-11-30 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2811202011433800.pdf 未授權公開取用 | 8.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
