Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22061
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許雅儒(Ya-Ju Hsu)
dc.contributor.authorChin-Cheng Linen
dc.contributor.author林晉丞zh_TW
dc.date.accessioned2021-06-08T04:00:23Z-
dc.date.copyright2018-08-13
dc.date.issued2018
dc.date.submitted2018-08-09
dc.identifier.citation[1] Argus, D. F., Fu, Y., & Landerer, F. W. (2014). Seasonal variation in total water storage in California inferred from GPS observations of vertical land motion. Geophysical Research Letters, 41(6), 1971-1980.
[2] Amos, C. B., Audet, P., Hammond, W. C., Bürgmann, R., Johanson, I. A., & Blewitt, G. (2014). Uplift and seismicity driven by groundwater depletion in central California. Nature, 509(7501), 483.
[3] Beaudoing, Hiroko and M. Rodell, NASA/GSFC/HSL(2015), GLDAS Noah Land Surface Model L4 monthly 0.25 x 0.25 degree V2.0,Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed.
[4] Bettinelli, P., Avouac, J. P., Flouzat, M., Bollinger, L., Ramillien, G., Rajaure, S., & Sapkota, S. (2008). Seasonal variations of seismicity and geodetic strain in the Himalaya induced by surface hydrology. Earth and Planetary Science Letters, 266(3-4), 332-344.
[5] Chaussard, E., Milillo, P., Bürgmann, R., Perissin, D., Fielding, E. J., & Baker, B. (2017). Remote Sensing of Ground Deformation for Monitoring Groundwater Management Practices: Application to the Santa Clara Valley During the 2012–2015 California Drought. Journal of Geophysical Research: Solid Earth, 122(10), 8566-8582.
[6] Dong, D., Herring, T. A., & King, R. W. (1998). Estimating regional deformation from a combination of space and terrestrial geodetic data. Journal of Geodesy, 72(4), 200-214.
[7] Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the earth and planetary interiors, 25(4), 297-356.
[8] Farrell, W. E. (1972). Deformation of the Earth by surface loads. Reviews of Geophysics, 10(3), 761-797.
[9] Feigl, K. L., D. C. Agnew, Y. Bock, D. Dong, A. Donnellan, B. H. Hager, T. A. Herring, D. D. Jackson, T. H. Jordan, R. W. King, S. Larsen, K. M. Larson, M. H. Murray, Z. Shen, & F. H. Webb (1993). Space geodetic measurement of crustal deformation in central and southern California, 1984–1992. Journal of Geophysical Research: Solid Earth, 98(B12), 21677-21712.
[10] Fu, Y., Argus, D. F., & Landerer, F. W. (2015). GPS as an independent measurement to estimate terrestrial water storage variations in Washington and Oregon. Journal of Geophysical Research: Solid Earth, 120(1), 552-566.
[11] Heki, K. (2003). Snow load and seasonal variation of earthquake occurrence in Japan. Earth and Planetary Science Letters, 207(1-4), 159-164.
[12] Huang, M. H., Bürgmann, R., & Hu, J. C. (2016). Fifteen years of surface deformation in Western Taiwan: Insight from SAR interferometry. Tectonophysics, 692, 252-264.
[13] Ide, S., & Tanaka, Y. (2014). Controls on plate motion by oscillating tidal stress: Evidence from deep tremors in western Japan. Geophysical Research Letters, 41(11), 3842-3850.
[14] Johnson, C. W., Fu, Y., & Bürgmann, R. (2017). Seasonal water storage, stress modulation, and California seismicity. Science, 356(6343), 1161-1164.
[15] Lawson, C. L., & Hanson, R. J. (1995). Solving least squares problems (Vol. 15). Siam.
[16] Lee, J. C., Angelier, J., Chu, H. T., Hu, J. C., & Jeng, F. S. (2001). Continuous monitoring of an active fault in a plate suture zone: a creepmeter study of the Chihshang Fault, eastern Taiwan. Tectonophysics, 333(1-2), 219-240.
[17] Lin, K. C., Hu, J. C., Ching, K. E., Angelier, J., Rau, R. J., Yu, S. B., Tsai, C. H., Shin, T. C., & Huang, M. H. (2010). GPS crustal deformation, strain rate, and seismic activity after the 1999 Chi‐Chi earthquake in Taiwan. Journal of Geophysical Research: Solid Earth, 115(B7).
[18] Longman, I. M. (1963). A Green's function for determining the deformation of the Earth under surface mass loads: 2. Computations and numerical results. Journal of Geophysical Research, 68(2), 485-496.
[19] Miller, M. M., & Shirzaei, M. (2015). Spatiotemporal characterization of land subsidence and uplift in Phoenix using InSAR time series and wavelet transforms. Journal of Geophysical Research: Solid Earth, 120(8), 5822-5842.
[20] Nahmani, S., Bock, O., Bouin, M. N., Santamaría‐Gómez, A., Boy, J. P., Collilieux, X., Métivier, L., Panet, I., Genthon, P., Linage, C., & Wöppelmann, G. (2012). Hydrological deformation induced by the West African Monsoon: Comparison of GPS, GRACE and loading models. Journal of Geophysical Research: Solid Earth, 117(B5).
[21] Simoes, M., Avouac, J. P., Beyssac, O., Goffé, B., Farley, K. A., & Chen, Y. G. (2007). Mountain building in Taiwan: A thermokinematic model. Journal of Geophysical Research: Solid Earth, 112(B11).
[22] Steer, P., Simoes, M., Cattin, R., & Shyu, J. B. H. (2014). Erosion influences the seismicity of active thrust faults. Nature communications, 5, 5564.
[23] Tregoning, P., Watson, C., Ramillien, G., McQueen, H., & Zhang, J. (2009). Detecting hydrologic deformation using GRACE and GPS. Geophysical Research Letters, 36(15).
[24] Wang, H., L. Xiang, L. Jia, L. Jiang, Z. Wang, B. Hu, and P. Gao (2012), Load Love numbers and Green’s functions for elastic Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust 2.0. Computers & Geosciences, 49, 190-199.
[25] Yu, S. B., Chen, H. Y., & Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1-3), 41-59.
[26] Yu, P. S., Yang, T. C., & Kuo, C. C. (2006). Evaluating long-term trends in annual and seasonal precipitation in Taiwan. Water Resources Management, 20(6), 1007-1023.
[27] 林宏奕、葉信富、李馨慈、徐國錦、李振誥(2011)應用遙感探測與地理資訊系統劃分台灣 中段山區(濁水溪中游)地下水潛勢 補注與開發潛能區。台灣水利,第3卷,第59期,第25-40頁。
[28] 林震哲、林元鵬、黃宏莆(2016)旱災災害應變管理機制之運用。災害防救科技與管理學刊,第五卷,第一期,第27-47頁。
[29] 陸挽中、賴慈華、陳瑞娥、林燕初、黃智昭、費立沅(2005)臺南高雄地區地下水文地質概況。第二屆資源工程研討會論文集,第82-85頁。
[30] 何春蓀(1986), 台灣地質概論:台灣地質圖說明書 (增訂第二版)。經濟部中央地質調查所,共164頁。
[31] 江崇榮、林燕初、陳建良(2011)濁水溪沖積扇地下水位與地表高程互動之模式與應用。地質,第30卷,第2期,第32-35頁。
[32] 行政院農業委員會(2011)提升效率,農業永續 ~ 彰雲地區農業水資源有效利用規劃說明。取自https://slidesplayer.com/slide/11385651/。
[33] 陳文山、宋時驊、吳樂群、徐澔德、楊小青(2005)末次冰期以來臺灣海岸平原區的海岸線變遷。國立台灣大學考古人類學刊,62期,40-55頁。
[34] 陳文山(2016)臺灣地質概論。中華民國地質學會,共204頁。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22061-
dc.description.abstractGPS可以精準測量地殼變形,因此被廣泛用於板塊運動與斷層滑移的研究中。在臺灣,GPS的時間序列中有明顯的季節性訊號,且與水循環有密切的關係。本研究主要分為兩個部分:首先以GPS測站覆蓋率佳的西南部為研究區域,探討地表變形和地下水位之間的關係,接下來再以GPS的垂直位移反演陸上儲水量變化。在多數區域,季節性地表高程變化為乾溼季轉變造成的荷重變化之彈性變形,在大量抽取地下水的區域則是受到孔隙水壓主控。在西部麓山帶,GPS記錄的地表高程變化與地下水位高度相關,且2010和2015年初兩次嚴重的乾旱事件,可以從前一年較小的季節性變化看出。本研究移除平原的測站資料,並以PREM地球層狀模型計算之格林函數建立圓盤荷重模型,再將臺灣以0.2度為間隔劃分隔點,將GPS的垂直位移反演成陸上儲水量變化。平均而言,南部的季節性儲水量變化量約為北部的兩倍,此為梅雨與颱風帶來降水大量集中於夏、秋兩季的結果。與以衛星觀測計算的GLDAS-Noah資料相比,GPS反演的結果可以反應較多不同因素造成的荷重變化。因此,由密集GPS構成的觀測網可以用來反演儲水量變化的空間分布。zh_TW
dc.description.abstractGlobal Positioning System (GPS) is widely used in studying seismic cycle deformation and plate tectonics. In Taiwan, we discover significant seasonal variation in GPS position time series and the seasonality greatly corresponds to hydrological cycle. In this study, we discuss the relation between the surface motion and seasonal water loading in southwestern Taiwan taking advantage of a dense spatial coverage of continuous GPS network. The annual GPS vertical deformation is mostly due to the elastic response to variations of surface loads in the wet and dry seasons, while some plain areas with massive water withdrawal are primary influenced by pore pressure effect. The seasonal vertical deformation on foothills is highly correlated to groundwater level, and is able to detect the occurrence of drought in the early 2010 and 2015 beforehand. We remove stations located in alluvial fan and estimate terrestrial water storage variation using a disk-load model with Green’s functions computed from an elastic earth model, PREM. We divide Taiwan into 0.2 by 0.2 grids and use seasonal GPS vertical displacements to invert the terrestrial water storage. In average, the inverted seasonal water variation is about 2 times larger in southern Taiwan compared to northern Taiwan due to heavy rainfalls during monsoons and typhoons in summer. Comparing soil moisture seasonal variation from GLDAS-Noah, GPS records integrated water storage variation including soil moisture, groundwater, reservoir etc. Consequently, GPS data from a dense array could be used as a tool to map the spatial variation of terrestrial water storage.en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:00:23Z (GMT). No. of bitstreams: 1
ntu-107-R05224207-1.pdf: 5189409 bytes, checksum: 6d61e1610e9d2297d4d7d979f6fa5830 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書..................i
誌謝............................ii
中文摘要........................iii
ABSTRACT........................iv
目錄..............................v
圖目錄..........................vii
表目錄............................x
第一章 緒論......................1
1.1 研究動機與內容...............1
1.2 區域地質環境概況.............3
第二章 文獻回顧..................7
2.1 地表高程季節性變化及其原因....7
2.2 地下水位與地表高程互動之模式.11
2.3 以GPS垂直位移反演儲水量變化..14
第三章 資料與時間序列處理........18
3.1 資料.......................18
3.1.1 GPS......................18
3.1.2 GLDAS-Noah...............19
3.1.3 地下水位..................21
3.2 時間序列處理................22
第四章 臺灣西南部地表高程與地下水位關係...25
4.1 GPS與地下水位相位比對........25
4.2 荷重主控區GPS與地下水位比對...27
4.2.1 主成份分析.................27
4.2.2 扇頂與山區的時間序列比較....32
4.3 扇央與扇尾GPS與地下水位比對...36
第五章 山區儲水量模型反演.........39
5.1 圓盤荷重模形.................39
5.2 反演方法.....................41
5.3 反演結果與討論...............44
5.3.1 季節性儲水量變化量反演結果..44
5.3.2 正演結果討論...............48
5.3.3 棋盤方格測試...............49
第六章 結論......................51
參考文獻..........................53
dc.language.isozh-TW
dc.subjectGPSzh_TW
dc.subject季節性zh_TW
dc.subject荷重zh_TW
dc.subject孔隙水壓zh_TW
dc.subject儲水量zh_TW
dc.subjectwater storageen
dc.subjectGPSen
dc.subjectloadingen
dc.subjectseasonalityen
dc.subjectpore pressureen
dc.title利用GPS季節性垂直位移探討臺灣儲水量變化zh_TW
dc.titleInvestigation of Terrestrial Water Storage Using GPS Seasonal Vertical Motion in Taiwanen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.coadvisor吳逸民(Yih-Min Wu)
dc.contributor.oralexamcommittee陳維婷,莊昀叡,江崇榮
dc.subject.keywordGPS,季節性,荷重,孔隙水壓,儲水量,zh_TW
dc.subject.keywordGPS,loading,pore pressure,seasonality,water storage,en
dc.relation.page56
dc.identifier.doi10.6342/NTU201802724
dc.rights.note未授權
dc.date.accepted2018-08-09
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
5.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved