請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22030完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 管希聖(Hsi-Sheng Goan) | |
| dc.contributor.author | Jyun-Lin Dai | en |
| dc.contributor.author | 戴君霖 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:58:47Z | - |
| dc.date.copyright | 2018-08-16 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-12 | |
| dc.identifier.citation | [1] Andrea Morello, Jarryd J. Pla and Floris A. Zwanenburg, Nature 467, 09392 (2010).
[2] Jarryd J. Pla, Kuan Y. Tan and Juan P. Dehollain, Nature 489, 11449 (2012). [3] Jarryd J. Pla, Kuan Y. Tan and Juan P. Dehollain, Nature 496, 12011 (2013). [4] S. Kafanov and P. Delsing, Phys. Rev. B 80, 155320 (2009). [5] Hans Huebl, Christopher D. Nugroho and Andrea Morello, Phys. Rev. B 81, 235318 (2010). [6] V. N. Golovach, X. Jehl, M. Houzet, M. Pierre, B. Roche, M. Sanquer, and L. I. Glazman, Phys. Rev. B 83, 075401 (2011). [7] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Science 309, 2180, (2005). [8] K. D. Petersson, J. R. Petta, H. Lu, and A. C. Gossard, Phys. Rev. Lett. 105, 246804 (2010). [9] Y. Dovzhenko, J. Stehlik, K. D. Petersson, J. R. Petta, H. Lu, and A. C. Gossard, Phys. Rev. B 84, 161302 (R)(2011). [10] Gernot Schaller, Clive Emary, Gerold Kiesslich, and Tobias Brandes, Phys. Rev. B 84, 085418 (2011). [11] H. J. Carmichael, An Open System Approach to Quantum Optics, Lecture Notes in Physics (Springer, Berlin, 1993). [12] C. W. Gardiner, Quantum Noise (Springer, Berlin, 1991). [13] D. F. Walls and G. J. Milburn, Quantum Optics (Springer, Berlin, 1994), pp. 92–97. [14] H. B. Sun and G. J. Milburn, Phys. Rev. B 59, 10748 (1999). [15] Steger, M. et al., Appl. Phys. 109, 102411 (2011). [16] Feher, G., Phys. Rev. 114, 1219–1244 (1959). [17] Xin-Qi Li, Wen-Kai Zhang, Ping Cui, Jiushu Shao, Zhongshui Ma, and YiJing Yan, Phys. Rev. B 69, 085315 (2004). [18] G.-L. Ingold and Y. V. Nazarov, in Single Charge Tunneling, NATO ASI Series, Vol. B 294, edited by H. Grabert and M. H. Devoret (Plenum Press, New York, 1992). [19] D. A. Averin and K. K. Likharev, in Mesoscopic Phenomena in Solids, edited by B. L. Alshuler, P. A. Lee, and R. A. Webb (Elsevier, Amsterdam, 1991). [20] H. M. Wiseman and G. J. Milburn, Phys. Rev. A 47, 1652 (1993). [21] H. M. Wiseman, D. W. Utami, H. B. Sun, G. J. Milburn, B. E. Kane, A. Dzurak, and R. G. Clark, cond-mat/0002279 (unpublished). [22] H. M. Wiseman and G. J. Milburn, Phys. Rev. A 47, 642 (1993). [23] H. M. Wiseman, Ph.D. thesis, University of Queensland, Brisbane, Australia, 1994. [24] H. M. Wiseman, Quantum Semiclassic. Opt. 8, 205 (1996). [25] G. Lindblad, Commun. Math. Phys. 48, 119 (1973). [26] M. J. Gagen, H. M. Wiseman, and G. J. Milburn, Phys. Rev. A 48, 132 (1993). [27] G. C. Hegerfeldt, Phys. Rev. A 47, 449 (1993). [28] A. N. Korotkov, Phys. Rev. B 60, 5737 (1999). [29] A. N. Korotkov, cond-mat/0003225 (unpublished). [30] Hsi-Sheng Goan, G. J. Milburn, H. M. Wiseman, and He Bi Sun, Phys. Rev. B63, 125326 (2001). [31] G. W. Gardiner, Handbook of Stochastic Method (Springer, Berlin, 1985). [32] B. Øksendal, Stochastic Differential Equations (Springer, Berlin, 1992). [33] Xin-Qi Li, Ping Cui, and Yi Jing Yan, Phys. Rev. Lett. 94, 066803 (2005). [34] T.M. Stace, and S. D. Barrett, Phys. Rev. Lett. 92, 136802 (2004). [35] Jun Yan Luo, Hu Jun Jiao, Feng Li, Xin-Qi Li, and Yi Jing Yan, J. Phys. Condens. Matter 21, 385801(2009). [36] S. A. Gurvitz, L. Fedichkin, D. Mozyrsky, and G. P. Berman, Phys. Rev. Lett. 91, 066801 (2001). [37] Hsi-Sheng Goan and Gerard J. Milburn, Phys. Rev. B 64, 235307 (2001). [38] Alexander N. Korotkov, Phys. Rev. B 63, 085312 (2001). [39] Bing Dong, Norman J. M. Horing, and X. L. Lei, Phys. Rev. B 74, 033303 (2006). [40] Jun Yan Luo, Lun-Wu Zhu, Xiao-Ling He, Bensheng Yun, and Shiping Ruan, arXiv:1203. 2233. [41] A. Shnirman, D. Mozyrsky and I. Martin, Europhy, Lett. 67 , 840 (2004). [42] Bruno Küng, Simon Gustavsson, Theodore Choi, Ivan Shorubalko, Oliver Pf¨affli, Fabian Hassler, Gianni Blatter, Matthias Reinwald, Werner Wegscheider, Silke Schon, Thomas Ihn, and Klaus Ensslin, Entropy 12, 1721 (2010). [43] E. Buks, R. Schuster, M. Heiblum, D. Mahalu and V. Umansky, Nature 391, 871 (1998). [44] T. Ihn, S. Gustavsson, U. Gasser, R. Leturcq, I. Shorubalko, and K. Ensslin, Physica E 42, 803 (2010). [45] D. Sprinzak, E. Buks, M. Heiblum, and H. Shtrikman, Lett. 84, 5820 (2000). [46] Jun Yan Luo, Yu Shena, Xiao-Ling He, Xin-Qi Li, and Yi Jing Yan, Phys. Lett. A 376, 59 (2011). [47] Jun Yan Luo, Hu Jun Jiao, Jianzhong Wang, Yu Shen, and Xiao-Ling He, Phys. Lett. A 374, 4904 (2010). [48] Jinshuang Jin, Xin-Qi Li, Meng Luo, and Yi Jing Yan, J. Appl. Phys. 109, 053704 (2011). [49] Hu Jun Jiao, Feng Li, Shi-Kuan Wang, and Xin-Qi Li, Phys. Rev. B 79, 075320 (2009). [50] Göran Johansson, Andreas Kck, and Göran Wendin, Phys. Rev. Lett. 88, 046802 (2002). [51] Chung-Chin Jian, Ph.D. thesis, University of National Taiwan, 2012. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22030 | - |
| dc.description.abstract | 在本論文中,我們研究如何透過連續弱測量(continuous weak measurement)來分辨量子系統的狀態。我們的系統是由一個在矽中的單磷原子之核自旋(nuclear spin)耦合電子自旋來組成,而且磷原子上的電子還隧道耦合一個被電荷感應靈敏的量子點接觸(quantum point contact)所量測之電子地點。在當電子的基曼能量分裂遠大於超精細交互作用時,磷原子的自旋可以近似成一個以z分量自旋極化為特徵基底的簡單四能階系統,藉著施加電子自旋共振(electron spin resonance)將電子從低能階激發到高能階,讓電子之後可以非相干性穿隧到和系統耦合的電子地點而使量子點接觸的電流產生變化,除此之外我們還施加核磁共振(nuclear magnetic resonance)去改變核自旋的狀態。我們使用非條件主方程和條件主方程來描述這個連續量子測量過程的動力行為,也計算通過量子點接觸的傳輸電流和對電流-電流的時間關聯函數(current-current two-time correlation functions)進行傅立葉轉換後得到的量子點接觸電流噪聲頻譜(current noise spectrum),然後我們就研究在條件動力行為下電流是如何隨著核自旋狀態做變化,而這個測量方法將會和在半導體中首次對單一核自旋進行連續弱測量的實現息息相關。 | zh_TW |
| dc.description.abstract | In this thesis, we investigate how to distinguish the state of a quantum system under continuous weak measurements. Our system is composed of a nuclear spin coupled to an electron spin in a single phosphorus atom in silicon. Moreover, the electron in the phosphorus atom is tunnel-coupled to an electronic site which is subject to a measurement by a charge-sensitive detector of a quantum point contact (QPC). In the case when the electron Zeeman energy splitting is much larger than the hyperfine interaction, the spins in a phosphorus atom can be approximated to a simple four-level system with z-component spin polarizations as eigen basis states. By performing electron spin resonance (ESR) on the electron to excite it to the higher level, the electron then can tunnel incoherently to the electronic site coupled to the system, causing change in the QPC current. Furthermore, we perform nuclear magnetic resonance (NMR) to vary the state of the nuclear spin. We describe the dynamics of the continuous quantum measurement process using the unconditional and conditional master equations. We also calculate the transport current through the QPC, and the QPC current noise spectrum after performing the Fourier transform on the current-current two-time correlation functions. Then, we investigate how the current changes with the state of the nuclear spin in the conditional dynamics. This measurement scheme will be relevant to the implementation of the first continuous weak measurement of a single nuclear spin in a semiconductor. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:58:47Z (GMT). No. of bitstreams: 1 ntu-107-R03222079-1.pdf: 51734408 bytes, checksum: baf4ec33001bbf67cceb9a18b166f734 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | Verification letter from the Oral Examination Committee………………………… i
Acknowledgements………………………………………………………………… ii Chinese Abstract…………………………………………………………………… iii English Abstract……………………………………………………………………… iv 1. Introduction………………………………………………………………… 1 2. Unconditional dynamics of a driven phosphorus donor measured by a quantum point contact…………………………………………………………………… 4 2.1 Introduction………………………………………………………………… 4 2.2 Hamiltonian of the composite system……………………………………… 9 2.3 Unconditional master equation of the composite system…………………… 11 2.4 The numerical results of the reduced density matrix elements and Discussions……………………………………………………………… 15 2.5 Conclusions…………………………………………………………………… 19 3. Conditional dynamics of a driven phosphorus donor measured by a quantum point contact…………………………………………………………………… 20 3.1 Introduction…………………………………………………………………… 20 3.2 Conditional master equation of the composite system……………………… 21 3.3 The numerical results of the conditioned density matrix elements and Discussions…………………………………………………………………… 23 4. Transport properties for the quantum measurement of a driven phosphorus donor detected by a quantum point contact…………………………………… 42 4.1 Introduction…………………………………………………………………… 42 4.2 Transport current through the QPC reservoirs…………………………… 43 4.2.1 Evaluation of the average current………………………………… 43 4.2.2 Numerical results and Discussions…………………………………… 46 4.3 Current-Current two-time correlation function and the noise spectrum… 50 4.3.1 Evaluation of the current-current two-time correlation function and noise spectrum……………………………………………………………… 50 4.3.2 Numerical results and Discussions…………………………………… 51 4.4 Conclusions…………………………………………………………………… 53 5. Conclusions…………………………………………………………………… 54 Bibliography………………………………………………………………………… 56 | |
| dc.language.iso | en | |
| dc.subject | 核磁共振 | zh_TW |
| dc.subject | 量子點接觸 | zh_TW |
| dc.subject | 核自旋 | zh_TW |
| dc.subject | 電子自旋共振 | zh_TW |
| dc.subject | 連續弱測量 | zh_TW |
| dc.subject | 電流噪聲頻譜 | zh_TW |
| dc.subject | 時間關聯函數 | zh_TW |
| dc.subject | two-time correlation functions | en |
| dc.subject | continuous weak measurement | en |
| dc.subject | current noise spectrum | en |
| dc.subject | quantum point contact | en |
| dc.subject | nuclear spin | en |
| dc.subject | electron spin resonance | en |
| dc.subject | nuclear magnetic resonance | en |
| dc.title | 在矽中被驅動的單一磷供體之自旋在連續測量下的動力行為 | zh_TW |
| dc.title | Dynamics of the Driven Spins of a Single Phosphorus Donor in Silicon under Continuous Measurements | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林俊達,蘇正耀 | |
| dc.subject.keyword | 量子點接觸,核自旋,電子自旋共振,核磁共振,時間關聯函數,電流噪聲頻譜,連續弱測量, | zh_TW |
| dc.subject.keyword | quantum point contact,nuclear spin,electron spin resonance,nuclear magnetic resonance,two-time correlation functions,current noise spectrum,continuous weak measurement, | en |
| dc.relation.page | 60 | |
| dc.identifier.doi | 10.6342/NTU201803059 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-08-13 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 50.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
