請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22018完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曹恆偉 | |
| dc.contributor.author | Li-Yang Huang | en |
| dc.contributor.author | 黃立揚 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:58:11Z | - |
| dc.date.copyright | 2018-08-21 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-13 | |
| dc.identifier.citation | [1] '科技部專題研究計畫:應用於智慧型標籤之關鍵技術研發,' 2014
[2] 黃欐雅,“Digital Signal Processing and Architecture Design of Smart Badge Access Point Receiver”,台大電子所碩士論文,2017 [3] Tomasi,Wayne.”Introduction to Data Communications and Networking. Prentice-Hall,” Inc.,2004. [4] Huo, Yuanhong, et al. 'High performance table-based architecture for parallel CRC calculation.' Local and Metropolitan Area Networks (LANMAN), International Workshop on. IEEE, 2015 [5] Sarwate, Dilip V. 'Computation of cyclic redundancy checks via table look-up,' Communications of the ACM 31.8 (1988): 1008-1013 [6] bladeRF - the USB 3.0 Superspeed Software Defined Radio (access 30.5.2018), URL: https://nuand.com/ [7] Nuand bladeRF USB3.0 Software Defined Radio (access 30.5.2018), URL:https://nuand.com/bladerf.pdf [8] LMS6002D datasheet (access 30.5.2018), URL:http://www.limemicro.com/download/LMS6002Dr2-DataSheet-1.2r0.pdf [9] Hari Krishna Boyapati , ”implementation of RSSI indexed look up table based AGC for improved dynamic range of DSSS based wireless rf transceivers,” 2016 2nd International Conference on Next Generation Computing Technologies (NGCT), pp.373-377, 2016. [10] Robert Ghilduta & filed under bladeRF , “2017.12-rc1 and Automatic Gain Control”, December 2017. [11] H. Yoshida, H. Tsurumi, and Y. Suzuki, 'DC offset canceller in a direct conversion receiver for QPSK signal reception,' in Proc. 9th IEEE Int. Symp. Pers., Indoor, Mobile Radio Commun., vol. 3, pp. 1314-1318, Sep. 1998. [12] LMS6002–Wide Band Multi Standard Radio Chip in 0.18um BiCMOS-Programming and Calibration Guide (accessed 30.5.2018). URL:http://lesc.det.unifi.it/wiki/lib/exe/fetch.php?media=wisec:hardware:lms6002dr2-programming_and_calibration_guide-1.1r1.pdf [13] J.M. Emmert , J.A. Cheatham , B.Jagannathan and S. Umarani ,” An FFT approximation technique suitable for on-chip generation and analysis of sinusoidal signals”, Proc. IEEE Symposium on Defect and Fault Tolerance in VLSI Systems , pp.361-367,2013 [14] 林文一, ” Digital Signal Processing and Architecture Design of Smart Badge Access Point Receiver,” 台大電子所碩士論文,2014 [15] CORDIC WIKI page(accessed 30.5.2018), URL:https://en.wikipedia.org/wiki/CORDIC [16] Floyd M. Gardner,“ Interpolation in Digital Modems-Part I: Fundamentals ”,IEEE transactions,Vol.41,No3,1993 [17] Gaeddert, J., Volos, H. I., Cormier D., Reed, J. H. “Multi-rate Synchronization of Digital Receivers in Software-Defined Radios,” In Proceeding of the SDR 07 Technical Conference and Product Exposition .Denver (USA), pp. 195–200, 2007. [18] Erup, L., Gardner, F., Harris, R. A. “Interpolation in digital modems – Part II: Implementation and performance.” IEEE Transactionson Communications, vol. 41, no. 6, pp. 998–1008, 1993. [19] F.M. Gardner, ”A BPSK/QPSK timing-error detector for sampled receivers,” IEEE Transactions on Communications, vol.34, no. 5, pp. 423–429, May 1986. [20] Fiala, P. and Linhart, R. “Symbol Synchronization for SDR using a Polyphase Filterbank Based on an FPGA,” Radio engineering, vol. 24, no. 3, pp. 772–782, Sep. 2015. [21] Harris F, Rice, ”Multi-rate Digital Filters for Symbol Timing Synchronization in Software Defined Radios,” IEEE Journal on Select Areas in Communications , pp.2346-2357, 2001. [22] Heiskala, Juha, and John Terry Ph D. OFDM wireless LANs: A theoretical and practical guide. Sams, 2001. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22018 | - |
| dc.description.abstract | 本論文自訂應用於短距離無線通訊之智慧型標籤(Smart Badge)系統,使用416MHz生醫通訊頻帶(industrial Scientific Medical Band,ISM)進行傳輸,傳輸接收的調變方式為差分正交相移鍵控(Differential Quadrature Phase Shift Keying,DQPSK ),因智慧型標籤系統需要長時間運作,須具備省電,低複雜度特性。且本系統為多使用者對一傳輸系統,各封包會有不同的載波頻率偏移與時脈偏移。因此在每次接收封包時需要重新進行同步的估測與補償,且本系統為隨機存取模式通訊協定(random access type),因此也需要封包的同步。
本系統是以商用的軟體定義無線電(Software Defined Radio, SDR)模組作為基站接收機DPS 演算法的驗證平台,演算法模擬環境為AWGN 通道SNR=10~15dB。利用模組的現有硬體資源配合PC 上的軟體達到系統的實現與驗證。對於未來的通訊協定的更動或是其他功能區塊的加入及整合有較及時的應變力。最後實驗結果呈現在Tx-Rx 距離0.5 公尺 可以使封包正確率達到86.54%。 | zh_TW |
| dc.description.abstract | In this paper we proposed a short-distance communication Smart Badge System which communicates through wireless channel and integrates the transceivers into licensed-free 416MHz bands. Modulation format of Smart Badge is DQPSL due to simplicity. The system design of Smart Badge is focusing on low complexity and dealing with some non-linear effect. The system is multiple users transmission system, every packet may have different Carrier frequency offset and clock offset, so each time we receive packet, we need to synchronize again. Besides our system adopts random access mode protocol that its packet arrival time is unknown, so packet synchronization is necessary.
We design and implement a low complexity Smart Badge base station receiver based on software defined radio module. We choose bladeRF SDR module, because it is suitable for our system specification. Due to its zero-IF architecture, we need to deal with some non-linear effect by DSP functions. Such as IQ imbalanced compensation, AGC, DC offset compensation and packet detection and confirm. The parameter we choose is simulation by assume SNR=10-15dB. We use Matlab to implement DSP function. The PER is about 13.46%, | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:58:11Z (GMT). No. of bitstreams: 1 ntu-107-R02943125-1.pdf: 3701907 bytes, checksum: d14bc1f2ed0d86e6a7399504cf3959e0 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | Abstract...........................................................................................i
摘要...............................................................................................ii. 圖索引………………………………………………………….iii. 表索引………………………………………………………….vii 目錄…………………………………………………...……….viii 第一章、 緒論.....................................1 1.1 前言...............................................1 1.2 研究動機...........................................2 1.3 論文架構...........................................2 第二章、 數位基站接收機規格與簡介...................3 2.1 數位基站接收機規格....................................3 2.2 基站接收機架構........................................3 2.3 基站接收機測試訊號考量................................5 2.4 軟體定義無線電.......................................11 2.5 零中頻接收機非理想效應..............................15 第三章、 自動增益控制..............................19 3.1 自動增益控制原理與簡介..............................17 3.2 使用的自動增益控制演算法架構........................19 3.3 自動增益控制模擬結果................................24 第四章、 直流偏移補償..............................26 4.1 直流偏移效應........................................26 4.2 直流偏移補償演算法..................................27 4.3 時間插槽的設計......................................30 4.4 直流偏移補償模擬結果................................31 第五章、 IQ 不平衡補償.............................33 5.1 IQ 不平衡來源........................................33 5.2 IQ 不平衡補償........................................33 5.3 IQ 不平衡補償模擬結果................................35 第六章、 匹配濾波器設計............................37 6.1 匹配濾波器(matched filter )..........................37 6.2 SRRC 階數設計與定點數分析............................39 第七章、 頻率偏移偵測與補償........................41 7.1 載波頻率偏移簡介....................................41 7.2 載波頻率偏移粗略估計與補償..........................41 7.3 載波頻率偏移精細偵測與補償..........................46 第八章、 符元時脈同步.............................52 8.1 符元取樣分析與設計..................................52 8.2 符元取樣同步演算法..................................54 8.3 符元同步模擬結果....................................59 第九章、 封包偵測與確認............................62 9.1 封包偵測性能與指標..................................62 9.2 封包偵測............................................62 9.3 封包確認............................................66 第十章、 實驗結果..................................70 10.1 實驗步驟...........................................70 10.2 發送端測試信號.....................................72 10.3 實驗結果...........................................74 第十一章、 結論與未來展望 .......................76 11.1 結論...............................................76 11.2 未來展望...........................................77 參考資料...........................................78 | |
| dc.language.iso | zh-TW | |
| dc.subject | 數位訊號處理 | zh_TW |
| dc.subject | 接收機 | zh_TW |
| dc.subject | 零中頻架構 | zh_TW |
| dc.subject | 軟體定義無線電 | zh_TW |
| dc.subject | digital signal proessing | en |
| dc.subject | receiver | en |
| dc.subject | zero IF architecture | en |
| dc.subject | software defined radio | en |
| dc.title | 應用於智慧型標籤基站接收機之軟體定義無線電模組
的實現 | zh_TW |
| dc.title | Smart Badge Access Point Receiver Implementation
Based on Software Defined Radio Module | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳家偉,蔡佩芸,錢膺仁 | |
| dc.subject.keyword | 數位訊號處理,軟體定義無線電,零中頻架構,接收機, | zh_TW |
| dc.subject.keyword | digital signal proessing,software defined radio,zero IF architecture,receiver, | en |
| dc.relation.page | 80 | |
| dc.identifier.doi | 10.6342/NTU201803199 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-08-13 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 3.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
