請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22000完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳志毅(Chi-Hi Wu) | |
| dc.contributor.author | Dan-Ni Shi | en |
| dc.contributor.author | 石丹妮 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:57:14Z | - |
| dc.date.copyright | 2018-08-15 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-14 | |
| dc.identifier.citation | [1] V. Malgras, A. Nattestad, J. H. Kim, S. X. Dou, and Y. Yamauchi, 'Understanding chemically processed solar cells based on quantum dots,' Sci Technol Adv Mater, vol. 18, no. 1, pp. 334-350, 2017.
[2] D. K. Patrick R. Brown, Richard R. Lunt, Ni Zhao, Moungi G. Bawendi, Jeffrey C. Grossman, and Vladimir Bulovic., 'Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange.pdf,' acs nano, vol. 10, pp. 5863-5872, 2014. [3] L. E. Brus, 'Electron–electron and electron‐hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,' The Journal of Chemical Physics, vol. 80, no. 9, pp. 4403-4409, 1984. [4] Y. Wang, A. Suna, W. Mahler, and R. Kasowski, 'PbS in polymers. From molecules to bulk solids,' The Journal of Chemical Physics, vol. 87, no. 12, pp. 7315-7322, 1987. [5] J. M. L. Octavi E. Semonin, Matthew C. Beard, 'Quantum dots for next-generation photovoltaics.pdf,' materials Today, vol. 15, no. 11, pp. 508-515, 2012. [6] A. J. Nozik, 'Multiple exciton generation in semiconductor quantum dots,' Chemical Physics Letters, vol. 457, no. 1-3, pp. 3-11, 2008. [7] J. J. Choi et al., 'Photogenerated exciton dissociation in highly coupled lead salt nanocrystal assemblies,' Nano Lett, vol. 10, no. 5, pp. 1805-11, May 12 2010. [8] M. C. Weidman, K. G. Yager, and W. A. Tisdale, 'Interparticle Spacing and Structural Ordering in Superlattice PbS Nanocrystal Solids Undergoing Ligand Exchange,' Chemistry of Materials, vol. 27, no. 2, pp. 474-482, 2014. [9] F. Xu, L. F. Gerlein, X. Ma, C. R. Haughn, M. F. Doty, and S. G. Cloutier, 'Impact of Different Surface Ligands on the Optical Properties of PbS Quantum Dot Solids,' Materials (Basel), vol. 8, no. 4, pp. 1858-1870, Apr 21 2015. [10] M. Bernechea, N. C. Miller, G. Xercavins, D. So, A. Stavrinadis, and G. Konstantatos, 'Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals,' Nature Photonics, vol. 10, no. 8, pp. 521-525, 2016. [11] L. Hu et al., 'Enhanced optoelectronic performance in AgBiS2 nanocrystals obtained via an improved amine-based synthesis route,' Journal of Materials Chemistry C, vol. 6, no. 4, pp. 731-737, 2018. [12] G. H. Carey, A. L. Abdelhady, Z. Ning, S. M. Thon, O. M. Bakr, and E. H. Sargent, 'Colloidal Quantum Dot Solar Cells,' Chem Rev, vol. 115, no. 23, pp. 12732-63, Dec 9 2015. [13] R. Wang, Y. Shang, P. Kanjanaboos, W. Zhou, Z. Ning, and E. H. Sargent, 'Colloidal quantum dot ligand engineering for high performance solar cells,' Energy & Environmental Science, vol. 9, no. 4, pp. 1130-1143, 2016. [14] Y. Wang et al., 'In Situ Passivation for Efficient PbS Quantum Dot Solar Cells by Precursor Engineering,' Adv Mater, vol. 30, no. 16, p. e1704871, Apr 2018. [15] Y. Liu et al., 'Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids,' Nano Lett, vol. 10, no. 5, pp. 1960-9, May 12 2010. [16] S. Yang, D. Prendergast, and J. B. Neaton, 'Tuning semiconductor band edge energies for solar photocatalysis via surface ligand passivation,' Nano Lett, vol. 12, no. 1, pp. 383-8, Jan 11 2012. [17] D. J. Milliron, 'The surface plays a core role,' Nature Materials, vol. 13, no. 8, pp. 772-773, 2014. [18] A. A. Bessonov et al., 'Compound Quantum Dot-Perovskite Optical Absorbers on Graphene Enhancing Short-Wave Infrared Photodetection,' ACS Nano, vol. 11, no. 6, pp. 5547-5557, Jun 27 2017. [19] Z. Ning et al., 'Quantum-dot-in-perovskite solids,' Nature, vol. 523, no. 7560, pp. 324-8, Jul 16 2015. [20] M. Sytnyk et al., 'Quasi-epitaxial Metal-Halide Perovskite Ligand Shells on PbS Nanocrystals,' ACS Nano, vol. 11, no. 2, pp. 1246-1256, Feb 28 2017. [21] C. H. Chuang, P. R. Brown, V. Bulovic, and M. G. Bawendi, 'Improved performance and stability in quantum dot solar cells through band alignment engineering,' Nat Mater, vol. 13, no. 8, pp. 796-801, Aug 2014. [22] P. R. Brown et al., 'Improved current extraction from ZnO/PbS quantum dot heterojunction photovoltaics using a MoO3 interfacial layer,' Nano Lett, vol. 11, no. 7, pp. 2955-61, Jul 13 2011. [23] J. Gao et al., 'n-Type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells,' Nano Lett, vol. 11, no. 8, pp. 3263-6, Aug 10 2011. [24] S. Chen et al., 'Inverted Polymer Solar Cells with Reduced Interface Recombination,' Advanced Energy Materials, vol. 2, no. 11, pp. 1333-1337, 2012. [25] C. E. Small et al., 'High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells,' Nature Photonics, vol. 6, no. 2, pp. 115-120, 2011. [26] J. M. Cho et al., 'Effects of ultraviolet–ozone treatment on organic-stabilized ZnO nanoparticle-based electron transporting layers in inverted polymer solar cells,' Organic Electronics, vol. 15, no. 9, pp. 1942-1950, 2014. [27] Y. Kato, M.-C. Jung, M. V. Lee, and Y. Qi, 'Electrical and optical properties of transparent flexible electrodes: Effects of UV ozone and oxygen plasma treatments,' Organic Electronics, vol. 15, no. 3, pp. 721-728, 2014. [28] K. Ip et al., 'Improved Pt∕Au and W∕Pt∕Au Schottky contacts on n-type ZnO using ozone cleaning,' Applied Physics Letters, vol. 84, no. 25, pp. 5133-5135, 2004. [29] J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, 'Intrinsic and extrinsic performance limits of graphene devices on SiO2,' Nat Nanotechnol, vol. 3, no. 4, pp. 206-9, Apr 2008. [30] P. H. Chang et al., 'Ultrahigh Responsivity and Detectivity Graphene-Perovskite Hybrid Phototransistors by Sequential Vapor Deposition,' Sci Rep, vol. 7, p. 46281, Apr 19 2017. [31] P.-H. Chang et al., 'Highly Sensitive Graphene–Semiconducting Polymer Hybrid Photodetectors with Millisecond Response Time,' ACS Photonics, vol. 4, no. 9, pp. 2335-2344, 2017. [32] P.-H. Chang, C.-S. Li, F.-Y. Fu, K.-Y. Huang, A.-S. Chou, and C.-I. Wu, 'Ultrasensitive Photoresponsive Devices Based on Graphene/BiI3 van der Waals Epitaxial Heterostructures,' Advanced Functional Materials, vol. 28, no. 23, 2018. [33] G. Konstantatos et al., 'Hybrid graphene-quantum dot phototransistors with ultrahigh gain,' Nat Nanotechnol, vol. 7, no. 6, pp. 363-8, May 6 2012. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22000 | - |
| dc.description.abstract | 本篇論文第一部分探討了基於配體修飾的PbS量子點太陽能電池溶液製程方式和元件結構的優化。首先,我們分別從常見的有機小分子配體、鈣鈦礦配體和鹵素配體中選取較為合適的短配體對量子點進行修飾。通過傅氏轉換紅外光譜(FTIR)和X射線光電子能譜(XPS)結果比較分析不同配體修飾對元件性能的影響,從而選取最合適的短配體——TBAI進行後續的實驗。接著,我們對元件結構進行了優化,根據紫外光電子能譜(UPS)結果,分析用EDT置換長碳鏈油酸後的PbS量子點薄膜(PbS_EDT)與MoO3層作為電洞傳輸層在元件結構中的作用。最後,我們討論了主動層(TBAI置換長碳鏈油酸後的PbS量子點薄膜)厚度對元件效率的影響。最終,我們製作出轉換效率為5.74%的PbS量子點太陽能電池。
在第二部分的實驗中,我們製作了元素無毒且含量豐富的三元材料AgBiS2量子點太陽能電池,並通過原子力顯微鏡(AFM)和XPS的分析比較,討論UV-Ozone對電子傳輸層(ZnO)的處理對元件性能的影響。發現,在一定的UV-Ozone處理時間範圍內,元件的光電轉換效率有明顯的上升。 實驗的第三部分主要是AgBiS2量子點在光電探測器上的應用。量子點材料與石墨烯的結合,彌補了單純石墨烯元件的缺點,例如差的光學吸收截面和低的載流子壽命;同時也避免了量子點載流子遷移率低的不足。混合型光電探測器在弱光探測領域具有高的光電導增益和響應率,響應率可達3.33×106 A/W,探測率可達3.48×1014 Jones。 | zh_TW |
| dc.description.abstract | In the first part of this thesis, PbS-based quantum dots (QDs) solar cells were optimized through selecting suitable ligands and structure designing. First, the surface of quantum dots was modified by several short ligands, including small organic ligands, perovskite ligands and halogen ligands. The results of X-ray photoemission spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) consistently indicated that Tetramethylammonium iodide (TBAI) can efficiently exchange oleic acid which is used to stabilize the PbS QDs. Next, we optimized the device structure by introduction of two QDs layers with modification of 1, 2-Ethanedithiol (EDT) and the MoO3 layer as the hole transport layer, and the power conversion efficiency of the optimized solar cells in this study can achieve 5.74%.
In the second part, we fabricated non-toxic and earth-abundant ternary AgBiS2 quantum dots solar cells, and discussed the effect of the UV-Ozone treatment on the electron transport layer (ZnO) by atomic force microscope (AFM) and XPS measurements. With UV-Ozone treatment, the power conversion efficiency of AgBiS2 quantum dots solar cells significantly boosted from 1.01% to 2.28%. The third part of the experiment is mainly about the application of AgBiS2 quantum dots on photodetectors. The combination of quantum dots and graphene compensated for the shortcomings of simple graphene components, such as poor optical absorption, and also avoided low carrier mobility of the quantum dots. The hybrid photodetector had high responsivity of 3.33×106A/W and detectivity of 3.48×1014 Jones in weak light detection. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:57:14Z (GMT). No. of bitstreams: 1 ntu-107-R05941106-1.pdf: 4205656 bytes, checksum: a3b07f6fe769ee7b5387abfe4ddcd165 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
致謝 i 中文摘要 iii Abstract iv 目錄 v 圖目錄 viii 表目錄 xii 第一章 緒論與介紹 1 1.1 太陽能電池介紹 1 1.2 量子點與量子點太陽能電池 3 1.3 PbS量子點與AgBiS2量子點簡介 6 1.4 量子點配體置換原理與常見配體分類 8 1.5 量子點太陽能電池結構 13 1.6 量子點太陽能電池工作模型與參數介紹 14 第二章 實驗儀器與材料 17 2.1 實驗儀器介紹 17 2.1.1 氮氣手套箱 17 2.1.2 離心機 18 2.1.3 太陽能量測模擬機 19 2.1.4 掃描電子顯微鏡(Scanning Electron Microscope, SEM) 20 2.1.5 原子力顯微鏡(Atomic Force Microscope, AFM) 21 2.1.6 紫外光電子能譜(Ultraviolet Photoelectron Spectroscopy, UPS) 22 2.1.7 X射線光電子能譜(X-ray Photoelectron Spectroscopy, XPS) 23 2.1.8 X射線衍射(X-ray Diffraction, XRD) 23 2.2.9傅氏轉換紅外線光譜分析儀(Fourier Transform infrared spectroscopy, FTIR) 24 2.2 實驗材料介紹 25 2.2.1 PbS 量子點 25 2.2.2 AgBiS2 量子點 25 2.2.3 TiO2 溶液 25 2.2.4 ZnO 溶液 26 2.2.5 實驗所用短配體分子 27 2.3 溶液製程製備量子點太陽能電池之實驗步驟 28 2.3.1 量子點太陽能電池製程方式介紹 28 2.3.2 PbS量子點太陽能電池製程過程簡介 29 2.3.3 AgBiS2量子點太陽能電池製程過程簡介 31 2.3 量測 32 第三章 PbS量子點太陽能電池 33 3.1 PbS量子點特性分析 33 3.2 不同配體修飾量子點之元件性能比較分析 35 3.3 PbS太陽能電池優化 40 3.3.1 元件結構優化 40 3.3.2 量子點光吸收層厚度優化 46 3.4 小結 51 第四章 AgBiS2 量子點太陽能電池 52 4.1 AgBiS2 量子點特性分析 52 4.2 不同配體修飾量子點之元件性能比較分析 55 4.3 電子傳輸層(ETL) ZnO之修飾 57 4.4 小結 62 第五章 量子點在光電探測器上的應用 63 5.1 光電探測器原理與特徵參數 63 5.1.1 響應率 (Responsivity, R) 64 5.1.2 光增益 (Gain, G) 64 5.1.3 探測率 (Detectivity, D*) 65 5.1.4 響應時間 (Response Time) 65 5.2 光電探測器元件結構 66 5.3 混合型光電探測器特性 67 5.3.1 光電流 67 5.3.2 響應率和探測率 68 5.3.3 響應時間 69 5.4 小結 70 第六章 結論與未來展望 71 參考資料 72 | |
| dc.language.iso | zh-TW | |
| dc.subject | 配體修飾 | zh_TW |
| dc.subject | 混合型光電探測器 | zh_TW |
| dc.subject | 量子點太陽能電池 | zh_TW |
| dc.subject | Hybrid photodetector | en |
| dc.subject | Quantum dots solar cells | en |
| dc.subject | ligand modification | en |
| dc.title | 利用配體修飾量子點表面之特性分析與光電元件應用 | zh_TW |
| dc.title | Characteristic Analysis of Surface Modification in Quantum Dots through Ligand Exchange and Application in Optoelectronic Device | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳奕君(I-Chun Cheng),吳育任(Yuh-Renn Wu),陳美杏(Mei-Hsin Chen) | |
| dc.subject.keyword | 量子點太陽能電池,配體修飾,混合型光電探測器, | zh_TW |
| dc.subject.keyword | Quantum dots solar cells,ligand modification,Hybrid photodetector, | en |
| dc.relation.page | 77 | |
| dc.identifier.doi | 10.6342/NTU201803325 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-08-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 4.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
