請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21997
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林宗賢(Tsung-Hsien Lin) | |
dc.contributor.author | Tzu-Hsuan Liu | en |
dc.contributor.author | 劉子瑄 | zh_TW |
dc.date.accessioned | 2021-06-08T03:57:05Z | - |
dc.date.copyright | 2018-08-19 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-13 | |
dc.identifier.citation | [1] A. Partridge and H. C. Lee, “We know that MEMS is replacing quartz. But why? And why now?,” Proc. 2013 Eur. Frequency and TimeForum & Int. Frequency Control Symp., July 2013, pp. 411–416.
[2] B. Razavi, 'Design of Analog CMOS Integrated Circuits', Boston: McGraw-Hill, 2001. [3] T. A. Riley, et al., 'Delta-sigma modulation in fractional-N frequency synthesis,' IEEE J. Solid-State Circuits, vol. 28, no. 5, pp. 553-559, May 1993. [4] A. Burdett, 'Ultra-low-power wireless systems: energy-efficient radios for the internet of things,' IEEE Solid-State Circuits Magazine, vol. 7, no. 2, pp. 18-28, Spring 2015. [5] S. Zaliasl et al., 'A 3 ppm 1.5 × 0.8 mm2 1.0 µA 32.768 kHz MEMS-based oscillator,' IEEE Journal of Solid-State Circuits, vol. 50, no. 1, pp. 291-302, Jan. 2015. [6] D. Park and S. Cho, 'Design techniques for ultra low-power phase-locked loops,' 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS), Seoul, 2011, pp. 1-4. [7] K. Kwok and H. C. Luong, 'Ultra-low-voltage high-performance CMOS VCOs using transformer feedback,' IEEE Journal of Solid-State Circuits, vol. 40, no. 3, pp. 652-660, Mar. 2005. [8] D. Park, W. Lee, S. Jeon, and S. H. Cho, 'A 2.5-GHz 860μW charge-recycling fractional-N frequency synthesizer in 130nm CMOS,' 2008 IEEE Symposium on VLSI Circuits, Honolulu, HI, 2008, pp. 88-89. [9] Fairchild Semiconductor, Appl. Note 140, pp. 1-3. [10] Datasheet, Epson SG-3050BC [Online]. Available: https://support.epson.biz/td/api/doc_check.php?dl=brief_SG-3050BC&lang=ja [11] Micro Crystal OV-7604-C7, Datasheet Farnell [Online]. Available: http://www.farnell.com/datasheets/14223.pdf [12] K. J. Hsiao, “A 32.4ppm/°C 3.2-1.6V self-chopped relaxation oscillator with adaptive supply generation,” Dig. Symp. VLSI Circuits, pp. 14-15, June 2012. [13] E. Vittoz, M. Degrauwe, and S. Bitz, “High-performance crystal oscillator circuits: Theory and application,” IEEE J. Solid-State Circuits, vol. SC- 23, no. 3, pp. 774–783, June 1988. [14] E. Vittoz and J. Fellrath, “CMOS analog integrated circuits based on weak inversion operations,” IEEE J. Solid-State Circuits, vol. SC-12, no. 3, pp. 224–231, June 1977. [15] S. Iguchi, T. Sakurai, and M. Takamiya, 'A low-power CMOS crystal oscillator using a stacked-amplifier architecture,' IEEE Journal of Solid-State Circuits, vol. 52, no. 11, pp. 3006-3017, Nov. 2017. [16] K. J. Hsiao, 'A 1.89nW/0.15V self-charged XO for real-time clock generation,' 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, 2014, pp. 298-299. [17] D. Yoon, T. Jang, D. Sylvester, and D. Blaauw, 'A 5.58 nw crystal oscillator using pulsed driver for real-time clocks,' IEEE Journal of Solid-State Circuits, vol. 51, no. 2, pp. 509-522, Feb. 2016. [18] A. Hajimiri and T. H. Lee, 'A general theory of phase noise in electrical oscillators,' IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998 [19] D. Johns and K. Martin, 'Analog Integrated Circuit Design', New York: Wiley, 2000. [20] J. Lin, 'A low-phase-noise 0.004-ppm/step DCXO with guaranteed monotonicity in the 90-nm CMOS process,' IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2726-2734, Dec. 2005. [21] Y. Chang, J. Leete, Z. Zhou, M. Vadipour, Y. T. Chang, and H. Darabi, 'A differential digitally controlled crystal oscillator with a 14-bit tuning resolution and sine wave outputs for cellular applications,' IEEE Journal of Solid-State Circuits, vol. 47, no. 2, pp. 421-434, Feb. 2012. [22] S. Iguchi, A. Saito, Y. Zheng, K. Watanabe, T. Sakurai, and M. Takamiya, '93% power reduction by automatic self power gating (ASPG) and multistage inverter for negative resistance (MINR) in 0.7V, 9.2µW, 39MHz crystal oscillator,' 2013 Symposium on VLSI Circuits, Kyoto, 2013, pp. C142-C143. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21997 | - |
dc.description.abstract | 時脈產生器是現代物聯網系統中一項不可或缺的重要組成。為了延長系統裝置中電池的使用壽命,在時脈產生器的設計裡功耗尤其關鍵。本篇論文提出了一極低功耗之32.768 kHz之分數型鎖相迴路,以及一雙輸出之石英時脈產生器,來達成低功耗之運作。
第一個作品為一極低功耗之32.768 kHz之分數型鎖相迴路,可應用於石英震盪器及微機電系統震盪器中,協助其產生32.768 kHz時鐘。本作品主要特色在於以一時序機制控制充電泵的開關,大幅省下充電泵在閒置時所消耗的功率,並以一CMOS擬態電阻來實現壓控震盪器中的大阻值電阻,將迴路中的電流控制在一個極小的值,同時大幅縮小晶片面積。此外,透過一電壓穩壓器提供一個較低的電壓,作為迴路中數位電路區塊的電源電壓,以降低數位電路的功率消耗。本作品以TSMC 180-nm製程實現,核心面積為0.116 mm2,在1V電壓源下總消耗電流為169nA,峰對峰抖動(peak-to-peak jitter)為529.4 ns。 在第二個作品中,我們提出了一個極低功耗雙輸出之石英時脈產生器,它僅通過一個石英晶體即提供出26-MHz和32.768-kHz時鐘,滿足了現代物聯網應用中小型化和低功耗的需求。我們採用自充式的架構,並提出一工作週期功耗調控技術來實現低功耗之26-MHz石英震盪器,並使用第一個作品中提出的分數型鎖相迴路來產生32.768 kHz時鐘。本作品採用TSMC 90-nm CMOS製程製造,核心面積為0.18 mm2,在1V電壓源下總消耗電流為1.41 μA。 | zh_TW |
dc.description.abstract | Clock generators are significant components to produce the timing signals in modern Internet of Things (IoT) systems. To enable long battery lifetime, power consumption is a critical concern in clock generators. In this thesis, an ultra-low power 32.768-kHz fractional-N PLL and a dual-output quartz crystal clock generator are proposed for low-power clock generation.
In the first work, we propose an ultra-low power 32.768-kHz fractional-N PLL which can be applied in both crystal and MEMS-based oscillators. A duty-cycled control scheme is proposed to turn off the charge pump intermittently for energy saving. In the VCO, a pseudo-resistor is applied to implement a large resistor, leading to a lower power consumption and smaller chip area. Furthermore, the digital power consumption is reduced by operating the digital circuits at a lower supply voltage generated from an on-chip voltage regulator. This PLL is fabricated in the TSMC 180-nm CMOS process with a core area of 0.116 mm2. Its current consumption is 169 nA from a 1-V supply. The measured peak-to-peak cycle-to-cycle jitter is 529.4 ns. In the second work, we propose an ultra-low power dual-output quartz crystal clock generator. It provides both 26-MHz and 32.768-kHz clocks by only one crystal, which meets the demand for miniaturization as well as power reduction in modern IoT applications. We adopt a self-charged architecture with a proposed duty-cycled power control technique to realize a low-power 26-MHz crystal oscillator, and use the fractional-N PLL proposed in the first chip to perform the 32.768 kHz clock generation. This clock generator is fabricated in the TSMC 90-nm CMOS process with a core area of 0.18 mm2. Its current consumption is 1.41 μA from a 1-V supply. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:57:05Z (GMT). No. of bitstreams: 1 ntu-107-R05943027-1.pdf: 5980146 bytes, checksum: 4ac9a7c27b219c1eb4b561055ac4979b (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 摘要 i
Abstract ii Table of Contents iii List of Figures vi List of Tables x Chapter 1 Introduction 1 1.1 Motivation 1 1.1.1 Application of 32.768-kHz Fractional-N PLL 2 1.1.2 Application of Dual-Output Quartz Clock Generator 2 1.2 Thesis Overview 3 Chapter 2 Introduction to Fractional-N PLL 5 2.1 Fundamentals of Phase Locked Loop 5 2.2 Principle of Classical Fractional-N PLL 9 2.3 Delta-sigma Fractional-N PLL 10 2.4 Prior Arts 12 2.4.1 Low Power MEMS-based Oscillator with Fractional-N PLL 12 2.4.2 Design Techniques for Ultra-Low Power PLLs 14 Chapter 3 Ultra-Low Power 32.768-kHz Fractional-N PLL 17 3.1 Motivation 17 3.2 System Architecture 18 3.3 Design Considerations 20 3.3.1 Architecture Considerations 20 3.3.2 Order and Bit-length Considerations of DSM 21 3.3.3 Bandwidth and Area Considerations 21 3.3.4 Power Considerations for Each Building Block 24 3.4 Building Blocks 25 3.4.1 Duty-cycled Charge Pump 25 3.4.2 Voltage-controlled Oscillator 30 3.4.3 Voltage Regulator 35 3.5 Measurement 37 3.5.1 Chip Photo 37 3.5.2 Test Setup 38 3.5.3 Measurement Results 39 Chapter 4 Fundamentals of Crystal Oscillator 43 4.1 Crystal Model 43 4.2 Theory of Three-Point Topology 45 4.3 Pierce Oscillator 48 4.4 Prior Arts of Low-Power Crystal Oscillator 49 4.4.1 Crystal Oscillator with Controlled Current 50 4.4.2 Stacked-amplifier Crystal Oscillator 51 4.4.3 Self-Charged Crystal Oscillator 52 Chapter 5 Ultra-Low Power Dual-Output Quartz Crystal Clock Generator 55 5.1 Motivation 55 5.2 System Architecture 56 5.2.1 Architecture of Proposed Crystal Oscillator 57 5.2.2 Architecture of Proposed Fractional-N PLL 60 5.3 Design Considerations 62 5.3.1 Energy Dissipation during Crystal Oscillation 62 5.3.2 Energy Delivering by Self-charged Scheme 65 5.3.3 Duty of Power Injecting 68 5.3.4 Phase Noise from Injection 70 5.4 Building Blocks 74 5.4.1 Comparator 74 5.4.2 Pulse Generator 77 5.4.3 Injection Control Circuit 78 5.4.4 Fractional-N PLL 79 5.5 Measurement 80 5.5.1 Chip Photo 80 5.5.2 Test Setup 80 5.5.3 Measurement Results 82 Chapter 6 Conclusion and Future Works 91 6.1 Conclusion 91 6.2 Future works 92 References 93 | |
dc.language.iso | zh-TW | |
dc.title | 應用於物聯網之極低功耗鎖相迴路及石英震盪器設計 | zh_TW |
dc.title | Ultra-Low Power Phase-Locked Loop and Crystal Oscillator Design for IoT Applications | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉深淵(Shen-Iuan Liu),李泰成(Tai-Cheng Lee),黃柏鈞(Po-Chiun Huang) | |
dc.subject.keyword | 低功耗,鎖相迴路,石英震盪器,實時時鐘,雙輸出, | zh_TW |
dc.subject.keyword | Ultra-low Power,Phase-locked Loop,Crystal Oscillator,Real-time Clock,Dual Output, | en |
dc.relation.page | 95 | |
dc.identifier.doi | 10.6342/NTU201803280 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2018-08-14 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 5.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。