Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21964
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林琬琬
dc.contributor.authorChien-Hsiang Chouen
dc.contributor.author周健翔zh_TW
dc.date.accessioned2021-06-08T03:55:22Z-
dc.date.copyright2018-10-03
dc.date.issued2018
dc.date.submitted2018-08-15
dc.identifier.citationAbboud HE. (2012) Mesangial cell biology. Exp Cell Res, 979-985.
Ahn, S. Y., Kim, Y., Kim, S. T., Swat, W., & Miner, J. H. (2013). Scaffolding proteins DLG1 and CASK cooperate to maintain the nephron progenitor population during kidney development. J Am Soc Nephrol, 24, 1127-1138.
Alexopoulou AN, Multhaupt HA, & Couchman JR. (2007) Syndecans in wound healing, inflammation and vascular biology. Int J Biochem Cell Biol, 39, 505-528.
Ashworth SL, & Molitoris BA. (1999) Pathophysiology and functional significance of
apical membrane disruption during ischemia. Curr Opin Nephrol Hypertens,
8, 449-458.
Basile, D. P., Anderson, M. D., & Sutton, T. A. (2012). Pathophysiology of acute kidney injury. Compr Physiol, 2, 1303-1353.
Chen, W., An, P., Quan, X. J., Zhang, J., Zhou, Z. Y., Zou, L. P., & Luo, H. S. (2017). Ca(2+)/calmodulin-dependent protein kinase II regulates colon cancer proliferation and migration via ERK1/2 and p38 pathways. World J Gastroenterol, 23, 6111-6118.
Cohen, A. R., Woods, D. F., Marfatia, S. M., Walther, Z., Chishti, A. H., & Anderson, J. M. (1998). Human CASK/LIN-2 binds syndecan-2 and protein 4.1 and localizes to the basolateral membrane of epithelial cells. J Cell Biol, 142, 129-138.
Deng, A., Arndt, M. A., Satriano, J., Singh, P., Rieg, T., Thomson, S., Blantz, R. C. (2010). Renal protection in chronic kidney disease: hypoxia-inducible factor activation vs. angiotensin II blockade. Am J Physiol Renal Physiol, 299, F1365-1373.
Deiteren, A., van der Linden, L., de Wit, A., Ceuleers, H., Buckinx, R., Timmermans, J. P., De Winter, B. Y. (2015). P2X3 receptors mediate visceral hypersensitivity during acute chemically-induced colitis and in the post-inflammatory phase via different mechanisms of sensitization. PLoS One, 10, e0123810.
Dimitratos, S. D., Woods, D. F., & Bryant, P. J. (1997). Camguk, Lin-2, and CASK: novel membrane-associated guanylate kinase homologs that also contain CaM kinase domains. Mech Dev, 63, 127-130.
Duyndam, M. C., Hulscher, S. T., van der Wall, E., Pinedo, H. M., & Boven, E. (2003). Evidence for a role of p38 kinase in hypoxia-inducible factor 1-independent induction of vascular endothelial growth factor expression by sodium arsenite. J Biol Chem, 278(9), 6885-6895.
Funke, L., Dakoji, S., & Bredt, D. S. (2005). Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Annu Rev Biochem, 74(xxx), 219-245.
Haseley, L. A., Hugo, C., Reidy, M. A., & Johnson, R. J. (1999). Dissociation of mesangial cell migration and proliferation in experimental glomerulonephritis. Kidney Int, 56, 964-972.
Heloisa R Vianna, C. M. B. M. S., Marcelo STavares,Mauro Martins Teixeira,Ana Cristina Simoes e Silva. (2011). Inflammation in chronic kidney disease: the role of cytokines. ARtigo de Revisão, 351-364.
Howard.A. Austin III, L. R. M., Kathleen M. Joyce,Tatiant T., .Antonovych,James E.Balow. (1984). Diffuse proliferative lupus nephritis: Identification of specific pathologic features affecting renal outcome. Kidney Int, 25 , 689-695.
Hsueh, Y. P. (1998). Direct interaction of CASK/LIN-2 and syndecan heparan sulfate proteoglycan and their overlapping distribution in neuronal synapses. 142, 139-151.
Hsu, C. Y. (2012). Yes, AKI truly leads to CKD. J Am Soc Nephrol, 23, 967-969.
Jang, H. R., & Rabb, H. (2009). The innate immune response in ischemic acute kidney injury. Clin Immunol, 130, 41-50.
Kezic, A., Stajic, N., & Thaiss, F. (2017). Innate Immune Response in Kidney Ischemia/Reperfusion Injury: Potential Target for Therapy. J Immunol Res, 2017, 6305439.
Kim, C. S., Bae, E. H., Ma, S. K., Kweon, S. S., & Kim, S. W. (2016). Impact of Transient and Persistent Acute Kidney Injury on Chronic Kidney Disease Progression and Mortality after Gastric Surgery for Gastric Cancer. PLoS One, 11, e0168119. Liu, L., Sun, T., Liu, Z., Chen, X., Zhao, L., Qu, G., & Li, Q. (2014). Traumatic brain injury dysregulates microRNAs to modulate cell signaling in rat hippocampus. PLoS One, 9, e103948.
Minet, E., Arnould, T., Michel, G., Roland, I., Mottet, D., Raes, M., Michiels, C. (2000). ERK activation upon hypoxia: involvement in HIF-1a activation. FEBS Lett, 468, 53-58.
Mottet, D., Michel, G., Renard, P., Ninane, N., Raes, M., & Michiels, C. (2003). Role of ERK and calcium in the hypoxia-induced activation of HIF-1a J Cell Physiol, 194, 30-44.
Naldini, A., Pucci, A., & Carraro, F. (2001). Hypoxia induces the expression and release of interleukin 1 receptor antagonist in mitogen-activated mononuclear cells. Cytokine, 13, 334-341.
Nangaku, M., & Eckardt, K. U. (2007). Hypoxia and the HIF system in kidney disease. J Mol Med (Berl), 85, 1325-1330.
Nguyen, M. T., & Devarajan, P. (2008). Biomarkers for the early detection of acute kidney injury. Pediatr Nephrol, 23, 2151-2157.
Ohtomo, S., Nangaku, M., Izuhara, Y., Takizawa, S., Strihou, C., & Miyata, T. (2008). Cobalt ameliorates renal injury in an obese, hypertensive type 2 diabetes rat model. Nephrol Dial Transplant, 23, 1166-1172.
Ratcliffe, P. J., O'Rourke, J. F., Maxwell, P. H., & Pugh, C. W. (1998). Oxygen sensing, hypoxia-inducible factor-1 and the regulation of mammalian gene expression. J Exp Biol, 201, 1153-1162.
Rosen, S., & Stillman, I. E. (2008). Acute tubular necrosis is a syndrome of physiologic and pathologic dissociation. J Am Soc Nephrol, 19, 871-875.
Sang, N., Stiehl, D. P., Bohensky, J., Leshchinsky, I., Srinivas, V., & Caro, J. (2003). MAPK signaling up-regulates the activity of hypoxia-inducible factors by its effects on p300. J Biol Chem, 278, 14013-14019.
Sanoff, S., & Okusa, M. D. (2011). Impact of acute kidney injury on chronic kidney disease and its progression. Contrib Nephrol, 171, 213-217.
Semenza, G. L. (2004). Hydroxylation of HIF-1a: oxygen sensing at the molecular level. Physiology (Bethesda), 19 , 176-182.
Solez, K., Morel-Maroger, L., & Sraer, J. D. (1979). The morphology of 'acute tubular necrosis' in man: analysis of 57 renal biopsies and a comparison with the glycerol model. Medicine (Baltimore), 58, 362-376.
Srivastava, S., McMillan, R., Willis, J., Clark, H., Chavan, V., Liang, C., Mukherjee, K. (2016). X-linked intellectual disability gene CASK regulates postnatal brain growth in a non-cell autonomous manner. Acta Neuropathol Commun 4.
Su, H., Lei, C.-T., & Zhang, C. (2017). Interleukin-6 signaling pathway and its role in kidney Ddisease: An update. Front Immunol, 8.
Tanaka, T., Matsumoto, M., Inagi, R., Miyata, T., Kojima, I., Ohse, T., Nangaku, M. (2005). Induction of protective genes by cobalt ameliorates tubulointerstitial injury in the progressive Thy1 nephritis. Kidney Int, 68, 2714-2725.
Tannahill, G., Curtis, A., Adamik, J., Palsson-McDermott, E., McGettrick, A., Goel, G., O’Neill, L. (2013). Succinate is a danger signal that induces IL-1β via HIF-1α. Nature, 496, 238-242.
Vaidya, V. S., Ferguson, M. A., & Bonventre, J. V. (2008). Biomarkers of acute kidney injury. Annu Rev Pharmacol Toxicol, 48, 463-493.
Volta, M., Calza, S., Roberts, A. M., & Roberts, R. G. (2010). Characterisation of the interaction between syndecan-2, neurofibromin and CASK: dependence of interaction on syndecan dimerization. Biochem Biophys Res Commun, 391, 1216-1221.
Wang, Y., Hao, N., Lin, H., Wang, T., Xie, J., & Yuan, Y. (2018). Down-regulation of CASK in glucotoxicity-induced insulin dysfunction in pancreatic beta cells. Acta Biochim Biophys Sin (Shanghai), 50, 281-287.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21964-
dc.description.abstract腎臟是體內清除廢物、調節電解質、平衡體液的重要器官。在台灣腎病人口逐年增加,而腎病也是全球十大主要死因之一。過濾血液是腎臟的重要功能,腎小球在這種功能中扮演重要的角色。系膜細胞佔腎小球細胞的三分之一,它已被發現與腎臟纖維化具有高度相關。鈣/鈣調蛋白依賴性絲氨酸激酶(CASK)首先在腦中被發現,而後在小腸,結腸和腎臟也被報導具有高度表達。目前已有許多與CASK相關的疾病被檢測出來。在過去文獻中發現,全身性剔除CASK 基因的小鼠,在出生後數小時內便會死亡。同時也有報導指出,在CASK 基因表現低下的小鼠,其腎臟的發育會受到阻礙。然而,CASK如何參與腎臟疾病現在仍不清楚。因此,本篇研究試圖找出CASK在缺血/再灌注損傷誘導的腎損傷中的作用及其可能的機制。結果我們發現在缺血/再灌流的小鼠腎臟中,CASK蛋白量降低,然而腎小球系膜細胞株(Mes13)在缺氧後則表現量增加。 經過實驗發現,在過度表達CASK的Mes13細胞給予缺氧的刺激後,其發炎因子IL-1β、IL-6,腎損傷指標LCN2的表現量,相較於CASK 表達量正常的組別來的低。在Mes13細胞個別給予HIF-1α、ERK、或p38抑制劑時,可以減少缺氧所導致的CASK 蛋白表現量上升。同時,我們也發現CASK蛋白表現下降時,能加速Mes13的爬行速度,反之則減少其移動能力。總而言之,CASK腎臟之表現量在腎損傷過程中會受到調控,並參與損傷後的反應如炎症及纖維化,但其背後機制需要進行更詳細的研究。zh_TW
dc.description.abstractKidney is an important organ to clear the waste in our body, regulate the electrolytes, and balance the fluid. Kidney disease is the top ten leading cause of death worldwide, especially in Taiwan. Filtering the blood is an important function of kidney, and glomeruli play a major role in this function. Mesangial cells take one-third population of the cells in glomeruli, and have been found highly associated to renal fibrosis. Calcium/calmodulin-dependent serine kinase (CASK) is highly expressed in brain, small intestine, colon, and kidney. Previously it was reported that the development of kidney is delayed in CASK knockdown mice. However, how CASK involves in kidney diseases is still unclear now. Our research is trying to figure out the role of CASK in ischemia/reperfusion injury (IRI) in kidney and the possible mechanisms. We applied hypoxia condition as an environment mimicking the consequence of acute kidney injury (AKI). Here, we found that CASK protein level in kidney is decreased in IRI animal model after operation for 1 and 14 days, which represent the AKI and chronic kidney disease (CKD) states, respectively. Besides increasing renal injury markers (LCN2, Cyr61) and inflammatory cytokines (IL-6, IL-1, p65) at both disease states, expression levels of fibrotic markers (-SMA, periostin, elastin) were also enhanced in CKD state. In contrast, we found the increased CASK expression in mesangial Mes13 cells and renal tubular epithelial NRK-52E cells after hypoxia stimulation. Although hypoxia-induced cell death in Mes13 cells was not changed by CASK silencing, increased protein expressions of HIF-1, knocking down CASK inhibited HO-1 and PDGFβ and p38 activation. Meanwhile gene expression of LCN2 and IL-1 were enhanced in CASK silenced Mes13 cells. In contrast, overexpressing CASK in Mes13 cells lead to the inhibition of hypoxia-induced LCN2, IL-1, IL-6 and TNF gene expression. Of note, KC7F2 (a HIF-1α inhibitor), U0126 (an ERK inhibitor) and SB202190 (a p38 inhibitor) can reduce the elevation of CASK after hypoxia. In wound healing assay, our data revealed the increased and decreased cell migration in Mes13 cells of CASK silencing and overexpression, respectively. In summary, CASK expression in kidney is regulated upon facing the hypoxia and reperfusion stresses, and CASK might play a protective role in kidney disease by attenuating the inflammation and fibrosis.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:55:22Z (GMT). No. of bitstreams: 1
ntu-107-R05443007-1.pdf: 1928115 bytes, checksum: 088395b729e537128ad613e7bf1db031 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsAbstract I
中文摘要 III
Chapter 1. Introduction 1
1.1 Kidney injury 1
1.2 Pathogenesis and etiology of kidney injury 2
1.3 Mesangial cells 3
1.4 Renal tubular epithelial cells 4
1.5 Hypoxia in kidney injury 5
1.6 Calcium/calmodulin-dependent serine protein kinase (CASK) 7
1.7 The relationship between CASK and kidney 9
Specific Aim 11
Chapter 2 Materials and Methods 12
2.1 Reagents and antibodies 12
2.2 Animal and ethics statement 13
2.3 Ischemia/reperfusion induced acute kidney injury 13
2.4 Cell culture 14
2.5 Hypoxia stimulation 15
2.6 Reverse transcription 15
2.7 Quantitative real time polymerase chain reaction (qRT-PCR) 16
2.8 Western blot 17
2.9 Small interfering RNA (siRNA) 18
2.10 Overexpress CASK 19
2.11 Annexin V/propidium iodide (PI) staining 19
2.12 MTT assay 20
2.13 Migration assay 21
Chapter 3 Result 22
3.1 Decreased renal expression of CASK after kidney injury in mice 22
3.2 CASK is upregulated in mesangial cells after hypoxia 24
3.3 CASK regulates p38 activity and inflammation response 25
3.4 HIF-1α, ERK and p38 inhibitors repress CASK expression 26
3.5 CASK is involved to negatively regulate mesangial cell migration 27
3.6 CASK is upregulated in renal tubular cells after hypoxia 28
Chapter 4 Discussion 29
4.1 Brief summary of this study 29
4.2 The regulation of CASK might be dependent on disease progression and/or species different 29
4.3 CASK may play a novel role in inflammation in ischemic kidney 30
4.4 The possible hypothesis to explain the regulation of CASK in mesangial cells 32
4.5 Limitation of this study and the future working 34
Conclusion 35
Reference 48
dc.language.isoen
dc.title探討CASK在腎臟缺血-再灌流損傷的角色zh_TW
dc.titleThe role of CASK in Renal Ischemia-Reperfusion Injuryen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝世良,吳青錫
dc.subject.keyword腎臟,缺血再灌流損傷,zh_TW
dc.subject.keywordkidney,CASK,ischemia-reperfusion,en
dc.relation.page55
dc.identifier.doi10.6342/NTU201803443
dc.rights.note未授權
dc.date.accepted2018-08-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
1.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved