Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 職業醫學與工業衛生研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21962
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor吳章甫(Chang-Fu Wu)
dc.contributor.authorbanghua chenen
dc.contributor.author陳邦華zh_TW
dc.date.accessioned2021-06-08T03:55:16Z-
dc.date.copyright2018-09-04
dc.date.issued2018
dc.date.submitted2018-08-15
dc.identifier.citationAggarwal, S., et al. (2012). 'Real-time prediction of size-resolved ultrafine particulate matter on freeways.' Environmental Science & Technology 46(4): 2234-2241.

Briggs, D. J., et al. (1997). 'Mapping urban air pollution using GIS: a regression-based approach.' International Journal of Geographical Information Science 11(7): 699-718.

Dons, E., et al. (2011). 'Impact of time–activity patterns on personal exposure to black carbon.' Atmospheric Environment 45(21): 3594-3602.

Eeftens, M., et al. (2012). 'Development of land use regression models for PM2. 5, PM2. 5 absorbance, PM10 and PMcoarse in 20 European study areas; results of the ESCAPE project.' Environmental Science & Technology 46(20): 11195-11205.

Hagler, G. S., et al. (2010). 'High-resolution mobile monitoring of carbon monoxide and ultrafine particle concentrations in a near-road environment.' Journal of the Air & Waste Management Association 60(3): 328-336.

Hankey, S. and J. D. Marshall (2015). 'Land Use Regression Models of On-Road Particulate Air Pollution (Particle Number, Black Carbon, PM2.5, Particle Size) Using Mobile Monitoring.' Environ Sci Technol 49(15): 9194-9202.

Henderson, S. B., et al. (2007). 'Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter.' Environmental Science & Technology 41(7): 2422-2428.

Ho, C. C., et al. (2015). 'Land use regression modeling with vertical distribution measurements for fine particulate matter and elements in an urban area.' Atmospheric Environment 104: 256-263.

Hoek, G., et al. (2008). 'A review of land-use regression models to assess spatial variation of outdoor air pollution.' Atmospheric Environment 42(33): 7561-7578.

Isakov, V., et al. (2007). 'A method of assessing air toxics concentrations in urban areas using mobile platform measurements.' Journal of the Air & Waste Management Association 57(11): 1286-1295.

Kaur, S., et al. (2007). 'Fine particulate matter and carbon monoxide exposure concentrations in urban street transport microenvironments.' Atmospheric Environment 41(23): 4781-4810.

Kuo, C. P., et al. (2014). 'Source apportionment of particulate matter and selected volatile organic compounds with multiple time resolution data.' Science of The Total Environment 472: 880-887.

Larson, T., et al. (2009). 'Mobile monitoring of particle light absorption coefficient in an urban area as a basis for land use regression.' Environmental Science & Technology 43(13): 4672-4678.

Larson, T., et al. (2007). 'A Spatial Model of Urban Winter Woodsmoke Concentrations.' Environmental Science & Technology 41(7): 2429-2436.

Macnaughton, P., et al. (2014). 'Impact of bicycle route type on exposure to traffic-related air pollution.' Science of The Total Environment 490(490): 37-43.

Marloes, E., et al. (2012). 'Development of Land Use Regression models for PM(2.5), PM(2.5) absorbance, PM(10) and PM(coarse) in 20 European study areas; results of the ESCAPE project.' Environmental Science & Technology 46(20): 11195.

Moore, D. K., et al. (2007). 'A land use regression model for predicting ambient fine particulate matter across Los Angeles, CA.' J Environ Monit 9(3): 246-252.

Organization, W. H. (2001). 'Environment and people’s health in China.' World Health Organization, United Nations Development Programme.

Patton, A. P., et al. (2014). 'An hourly regression model for ultrafine particles in a near-highway urban area.' Environ Sci Technol 48(6): 3272-3280.

Pui, D. Y. H., et al. (2014). 'PM2.5 in China: Measurements, sources, visibility and health effects,and mitigation.' Particuology 13(2): 1-26.

Sabaliauskas, K., et al. (2015). 'Development of a land-use regression model for ultrafine particles in Toronto, Canada.' Atmospheric Environment 110: 84-92.

Schwartz, J., et al. (2002). 'The Concentration-Response Relation between PM2.5and Daily Deaths.' Environmental Health Perspectives 110(10): 1025-1029.

Su, J. G., et al. (2009). 'A distance-decay variable selection strategy for land use regression modeling of ambient air pollution exposures.' Science of The Total Environment 407(12): 3890-3898.

Van den Bossche, J., et al. (2015). 'Mobile monitoring for mapping spatial variation in urban air quality: Development and validation of a methodology based on an extensive dataset.' Atmospheric Environment 105: 148-161.

Wallace, J., et al. (2009). 'Mobile monitoring of air pollution in cities: the case of Hamilton, Ontario, Canada.' Journal of Environmental Monitoring 11(5): 998-1003.

Wallace, L. A., et al. (2011). 'Validation of continuous particle monitors for personal, indoor, and outdoor exposures.' Journal of Exposure Science & Environmental Epidemiology 46(21): 49-64.

Westerdahl, D., et al. (2005). 'Mobile platform measurements of ultrafine particles and associated pollutant concentrations on freeways and residential streets in Los Angeles.' Atmospheric Environment 39(20): 3597-3610.

WHO. (2006). Air Quality Guidelines: Global Update 2005. Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide, World Health Organization.

Wu, C. F., et al. (2005). 'Evaluation and quality control of personal nephelometers in indoor, outdoor and personal environments.' J Expo Anal Environ Epidemiol 15(1): 99-110.

Zuurbier, M., et al. (2009). 'Minute ventilation of cyclists, car and bus passengers: an experimental study.' Environ Health 8(1): 48-48.

Zwack, L. M., et al. (2011). 'Modeling spatial patterns of traffic-related air pollutants in complex urban terrain.' Environmental Health Perspectives 119(6): 852.

Zwack, L. M., et al. (2011). 'Modeling Spatial Patterns of Traffic-Related Air Pollutants in Complex Urban Terrain.' Environmental Health Perspectives 119(6): 852-859.

李睿桓, et al. (2015). '運用土地利用迴歸模式評估臺北都會區懸浮微粒之空間變異性.' 臺灣大學環境衛生研究所學位論文: 1-178.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21962-
dc.description.abstract近年來,由於大衆的環保意識日漸提升及對健康議題的重視,促使公共運輸系統的普及及自行車通勤人數的增加,而自行車專用道多毗鄰機動車道。當人們選用自行車作爲出勤方式時,就會更加容易暴露於PM2.5(空氣動力學直徑≤ 2.5μm的顆粒物)之下。
本研究針對此相關議題進行實地採樣研究,在2018年6月12日至6月25日間於交通尖峰時刻對臺北市都會區內八條自行車道及配對巷道、四條補充道路進行單人採樣及多人同時採樣兩階段共72小時實地採樣,同時收集採樣路徑周遭的土地利用資料,建立土地利用迴歸模式,並最終用於推估臺北市都會區內PM2.5之濃度分佈。
研究發現,兩階段採樣期間各路徑細懸浮微粒平均濃度分別爲5.3-59.4µg/m3及4.7-73.0µg/m3,同時透過Airvisual Node與TSI DustTrak™ II之模式對比,證明利用簡易式氣懸浮微粒監測儀建立土地利用迴歸模式是可行的。在探討不同時間、空間解析度下模式的表現後,第一階段最終選擇模式R2爲0.83,LOOCV驗證後R2爲0.81,選入的土地利用變項爲工商業區(100m環域),主要道路面積(25m環域),周遭四個環保署測站PM2.5濃度值,第二階段最終模式R2爲0.76,LOOCV驗證後R2爲0.75,選入的土地利用變項爲所有道路長度(100m環域),所有道路面積(500m環域)及周遭四個環保署測站PM2.5濃度值,而後藉此二模式推估臺北市都會區交通尖峰時刻PM2.5濃度分佈圖,呈現了臺北市都會區PM2.5之空間變異,建議自行車出勤者應避開道路、工商業區密集的區域。
zh_TW
dc.description.abstractIn recent years, due to increasing public awareness of environmental protection and attention to health issues, the popularity of public transport systems and the number of bicycle commutes have increased. The bike express lanes in Taipei were built adjacent to traffic lanes. Bikers may easily expose to traffic emission of PM2.5 (particulate matter ≤ 2.5 μm in aerodynamic diameter).
This study was conducted through a series of field campaigns to investigate the distribution of air pollutants near the bike lanes in Taipei City. We focus on eight bicycle lanes and paired alleys, as well as four supplementary roads, in Taipei metropolis area from 2018/6/12-2018/6/25. This study collected information on traffic, land use data and population density in Taipei metropolitan area. The regression model was used to estimate the concentration distribution of PM2.5 in Taipei metropolitan area.
The average PM2.5 concentrations of each biking routes during the two sampling periods were 53-59.4µg/m3 and 4.7-73.0µg/m3. By comparing the LUR model of Airvisual Node and TSI DustTrak™ II, it is showed that building LUR models with low-cost sensors is feasible. The R2 of the best LUR model in the stage #1 is 0.78, and the LOOCV validation R2 is 0.77. The selected land use variables are the industrial & business area (100m area buffer), major road area (25m area buffer), the PM2.5 concentration at the air quality monitoring station (AQMS). The R2 of the best LUR model in the stage #2 is 0.75, the LOOCV validation R2 is 0.75. The selected land use variables are the length of all roads (100m area buffer), all road areas (500m area buffer) and the PM2.5 concentration at the AQMS. According to the results of this study, it is recommended that bikers should avoid road-intensive areas and industrial & commercial areas.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:55:16Z (GMT). No. of bitstreams: 1
ntu-107-R05841020-1.pdf: 8395483 bytes, checksum: 0e1d449cc1e46fe887bd14d0149fabb0 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents目錄
中文摘要 I
英文摘要 II
圖目錄 V
表目錄 VI
1. 緒論 1
1.1 研究背景 1
1.2 研究目的 4
2. 研究材料與方法 5
2.1 流程架構 5
2.2 路線規劃 7
2.2.1 採樣路線選取 7
2.2.2 採樣時間選取及規劃 11
2.3 監測方式 13
2.3.1 細懸浮微粒(PM2.5)監測儀器 13
2.3.2 移動監測平臺 13
2.3.3 PM2.5監測儀校正方式 16
2.4 GPS設備及資料處理 16
2.4.1 GPS設備 16
2.4.2 GPS資料處理 17
2.5 GIS資料的收集與分析 18
2.5.1 收集自行車道周遭土地利用變項類別 18
2.5.2 GIS分析 20
2.6 土地利用迴歸模式的建立與驗證 21
2.6.1 數據分析和處理方法 22
2.6.2 土地利用迴歸模式的建立 23
2.6.3 模式的診斷與檢驗 25
2.6.4 模式的驗證 25
3. 研究結果及討論 27
3.1 Airvisual Node與TSI DustTrak™ II騎行間平行比對 27
3.2 Airvisual Node間平行比對 28
3.3 自行車採樣監測結果描述性統計 30
3.3.1 自行車道與巷道PM2.5差異研究 34
3.4 土地利用迴歸模式結果呈現 38
3.4.1 土地利用迴歸模式結果 38
3.4.2 不同模式間比較 42
3.4.3 Airvisual Node與TSI DustTrak™ II模式對比 46
3.4.4 土地利用迴歸模式驗證 51
3.4.5 自行車道模式預測值與實際值比對 55
3.4.6 土地利用迴歸模式跨周驗證 57
3.4.7 單人採樣與多人採樣比較 60
3.5 土地利用迴歸模式外推 61
3.6 與移動採樣構建土地利用迴歸模式文獻比較 65
3.7 研究限制 67
4. 結論 68
參考文獻 70
附錄I 各階段各路徑描述性統計 74
附錄II不同階段不同時間空間解析度LUR模式結果 78
附錄III未做自變量、因變量均值處理LUR模式結果 81
附錄IV 移動平均後TSI DUSTTRAK™ II LUR模式結果 84
dc.language.isozh-TW
dc.title運用土地利用迴歸模式結合移動監測評估臺北自行車道細懸浮微粒濃度之空間變異性zh_TW
dc.titleLand Use Regression Modeling with Mobile Monitoring to Estimate Spatial Variation of PM2.5 at Bicycle Lanes in Taipeien
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊孝友(Hsiao-Yu Yang),邱嘉斌(Chia-Pin Chio)
dc.subject.keyword土地利用迴歸模式,PM2.5,細懸浮微粒,自行車通勤,移動採樣,zh_TW
dc.subject.keywordLand Use Regression Models,PM2.5,Exposure,Mobile Monitoring,en
dc.relation.page84
dc.identifier.doi10.6342/NTU201803470
dc.rights.note未授權
dc.date.accepted2018-08-16
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept職業醫學與工業衛生研究所zh_TW
Appears in Collections:職業醫學與工業衛生研究所

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
8.2 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved