Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21956
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王立民(Li-Min Wang)
dc.contributor.authorYuan-Xiang Buen
dc.contributor.author卜元祥zh_TW
dc.date.accessioned2021-06-08T03:54:57Z-
dc.date.copyright2018-08-18
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citation[1] L. C. (. 1. 1. H.K. Onnes, Vols. 122b, 122c, 1911.
[2] J. Bardeen, L. N. Cooper and R. Schrieffe, Phys. Rev, vol. 108, p. 1175, 1957.
[3] J. G. Bednorz and K. A. M üller, Z. Phys, vol. B64, p. 198, 1986.
[4] C. W. Chu et al, Phys. Rev. Lett, vol. 58, p. 405, 1987.
[5] B.D.Josephson, Physics Letters, vol. 1, pp. 251-253, 1962.
[6] M. Haemaelaeinen, R. Hari, Risto J. Ilmoniemi, J. Kanuutila, and O.V. Lounasmaa, Rev. Mod. Phys, vol. 65, p. 413, 1993.
[7] P. Seidel, R. Weidl, S. Brabetz, F. Schmidl, H. Nowak and U. Leder, 'Appl. Supercond,' Appl. Supercond, vol. 6, p. 309, 1998.
[8] Y.Zhang, H. Bousack, M. Bick, A. Montsch, H.Soltner, W. Wolf, U. Steinhoff, L. Trahms, and P. Endt, Appl. Supercond, vol. 6, pp. 705-710, 1999.
[9] J. Kim, J. Kang, E. Lee, I.H. Song, J. Gohng, and T. S. Hahn, IEEE. Trans. Appl. Supercond, vol. 9, p. 4389, 1999.
[10] N. Kasai, D. Suzuki, H. Takashima, and M. Koyanag, IEEE. Trans. Appl. Supercond, vol. 9, p. 4393, 1999.
[11] T.S. Lee, E. Danster, and J. Clarke, Rev. Sci. Instrum, Rev. Sci. Instrum, vol. 67, p. 4208, 1996.
[12] C.C. Tsuei, and J. R. Kirley, Rev. Mod. Phys, vol. 72, p. 969, 2000.
[13] H. Matz, D. Drung, S. Hartwig, H. Groβ, R. Kotitz, W. Muller, A. Vass, W. Weitschies, and T. Trahms, Appl. Supercond, vol. 6, p. 577, 1998.
[14] L. Kaczmarek, R. IJsselsteijn, V. Zakosarenko, A. Chwala, H.-G. Meyer, M. Meyer and R. Stolz, IEEE. Trans. Appl. Supercond, vol. 28, p. 7, 2018.
[15] K. Char, M. S. Colclough, S. M. Garrison, N. Newman and G. Zaharchuk, Appl. Phys. Lett, vol. 59, p. 733, 1991.
[16] K. Char, M. S. Colclough, L. P. Lee and G. Zaharchuk, Appl. Phys. Lett, vol. 59, p. 2177, 1991.
[17] D. Winkler, Y. M. Zhang, P. Å. Nilsson, E. A. Stepantsov, and T. Claeson, Phys. Rev. Lett, vol. 72, p. 1260, 1994.
[18] Z. G. Ivanov, E. A. Stepantsov, T. Claeson, F. Wenger, S. Y. Lin, N. Khare, and P. Chaudhari, Phys. Rev. B, vol. 57, p. 602, 1998.
[19] J. Gao, Yu. M. Boguslavskij, B. B. G. Klopman, D. Terpstra1, R. Wijbrans,G. J. Gerritsma and H. Rogalla, J, Appl. Phys, vol. 72, p. 575, 1992.
[20] Martin A. J. Verhoeven, Gerrit J. Gerritsma and Horst Rogalla, IEEE, vol. 5, pp. 2095-2098, 1995.
[21] T. Umezawa, D. J. Lew, S. K. Streiffer and M. R. Beasley, Appl. Phys. Lett, vol. 63, p. 3221, 1993.
[22] H.C. Yang,J.H. Lu,S.D. Lin, L.C. Ku,H.M. Cho,W.B. Jian,M.Y. Chern,H.E. Horng, J. Appl. Phys, p. 1871, 1995.
[23] N. Missert1, T. E. Harvey1, R. H. Ono1 and C. D. Reintsema, Appl. Phys. Lett, vol. 63, p. 1690, 1993.
[24] K Herrmann, Y Zhang, H -M Muck, J Schubert, W Zander and A I Braginski, Supercond. Sci. Technol, vol. 4, p. 583, 1993.
[25] C. H. Wu, U. C. Sou, J. C. Chen, K. L. Chen, and H. C. Yang, vol. 88, p. 102504, 2006.
[26] Gun Yong Sungy, Jeong Dae Suhy, Sang Min Leez, Supercond. Sci. Technol, vol. 9, p. A18–A21, 1996.
[27] Gun Yong Sung, Jeong Dae Suh, IEEE. Trans. Appl. Supercond, vol. 7, p. 2308, 1997.
[28] Q. D. Jiang, Z. J. Huang, A. Brazdeikis, M. Dezaneti, C. L. Chen, P. Jin, Appl. Phys. Lett, vol. 72, p. 25, 1998.
[29] Hsiao-Wen Yu,Ming-Jye Chen,H.C. Yang,S.Y. Yang, Physica C, vol. 333, pp. 163-169, 2000.
[30] C. P. Poole Jr, H. A. Farach, R. J. Creswick, Superconductivity 2nd Edition, 2007, p. 34.
[31] W.Meissner and R.Ochsenfeld, vol. 21, p. 787, 1993.
[32] C. P. Poole Jr., H. A. Farach, R. J. Creswick, Superconductivity 2nd Edition, 2007, p. 41.
[33] F.London and H.London, Proc. Roy Soc, vol. (London) A155, p. 71, 1935.
[34] J. Clarke, A. I. Braginski, The SQUID Handbook, Vols. 1,Fundamentals and Technology of SQUIDs, 2004.
[35] 陳衍儒, “高溫超導量子干涉元件之製程與特性研究-使用回收雙晶基板,” 2015.
[36] 張育綸, “高溫超導梯度計交流磁化儀之開發暨生物分子檢測應用研究,” 2014.
[37] 曾尚銘, “斜坡式超導穿隧元件之製作與特性研究,” 2014.
[38] Li Luo, X. D. Wu, R. C. Dye, R. E. Muenchausen, S. R. Foltyn, Y. Coulter,, Appl. Phys. Lett, vol. 59, p. 2043, 1991.
[39] X. D. Wu, R. C. Dye, R. E. Muenchausen, S. R. Foltyn, M. Maley, A. D. Rollett, A. R. Garcia, and N. S., Appl. Phys. Lett, vol. 65, p. 2165, 1991.
[40] M. W. Denhoff and J. P. McCaffrey, vol. 70, p. 3986, 1991.
[41] BinBin Wang,LinFei Liu,Xiang Wu,YanJie Yao,MengLin Wang, J Supercond Nov Magn, vol. 29, pp. 2487-2494, 2016.
[42] Zhi-Xin Li, Jin-Jin Cao, Xiao-Fan Gou, Tian-Ge Wang, Feng Xue, Applied Surface Science, vol. 427, pp. 169-173, 2018.
[43] 陳祐丞, 高溫超導釔鋇銅氧薄膜之二氧化鈰緩衝層效應研究, 2018.
[44] Bhanu Prakash,S.Chakraverty, Vols. 213-214, pp. 28-30, 2015.
[45] J. G. Connell, B. J. Isaac, G. B. Ekanayake, D. R. Strachan, vol. 101, p. 251607, 2012.
[46] Florian Gellé, Roxana Chirita, Damien Mertz, Mircea V. Rastei, Aziz Dinia, Silviu Colis, Surface Science, vol. 677, pp. 39-45, 2018.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21956-
dc.description.abstract本研究探討了一種垂直式三明治之超導量子干涉元件(SQUID)製作方法。使用射頻磁控濺鍍方式成長釔鋇銅氧(YBa2Cu3O7-δ)/二氧化鈰(CeO2)/釔鋇銅氧(YBa2Cu3O7-δ)三層膜於鈦酸鍶(SrTiO3)基板上,以光學微影及離子蝕刻方式製作垂直式三明治結構之超導量子干涉元件,並且量測出SQUID的特性曲線,作為一可能取代雙晶基板製作SQUID元件之替代方案。
由量測結果得知,回收的鈦酸鍶單晶基板經過拋光研磨技術讓基板表面粗糙度降至0.6 nm,可用於成長高品質的高溫超導薄膜。製作完的SQUID元件在77 K時有剩餘電阻的情況,但是經由高氧壓退火後,可回復其超導特性,量測到在溫度77 K時臨界電流IC = 80 μA,峰值電壓Vpp = 0.79 μV。經由所量測出的V-Φ曲線,可以看到我們所通的偏壓電流越大,其電壓調製幅度越大,當偏壓電流為100 μA時,電壓調製幅度達到極大值0.79 μV,隨後電壓調製幅度就會隨著所通的偏壓電流增加而減少,此與SQUID特性相符。
zh_TW
dc.description.abstractIn this thesis, a sandwich-type technique for the fabrication of high-TC Superconducting Quantum Interference Devices(SQUIDs) is researched. We deposited YBa2Cu3O7-δ/CeO2/YBa2Cu3O7-δ trilayer thin films on SrTiO3 substrate by RF-magnetron sputtering technique and made the SQUIDs by using photolithography and ion-beam etching process. We measured the characteristic curves of the SQUIDs on this structure, and expected this technique could be a possible method to substitute the bi-crystal substrate SQUIDs.
From the measured results, the roughness of the recycled substrates is 0.6 nm after polishing and annealing. The high-quality high-TC superconducting thin films were grown on the recycled substrates. We found that the SQUID characteristic has residual resistance at 77 K. However, after annealing at high oxygen pressure, it can recover its superconducting properties. Measured results show that critical current IC = 80 μA and peak-to-peak voltage Vpp = 0.79 μV with a bias current 100 μA at 77 K. The measured V-Φ curves show that, the larger the bias current, the larger amplitude of the voltage modulation, which agrees with the SQUID characteristic.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:54:57Z (GMT). No. of bitstreams: 1
ntu-107-R05222010-1.pdf: 3217320 bytes, checksum: 82982f7eca0316be282edfd9ed866e95 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表目錄 ix
Chapter 1 序論 1
1.1 研究背景 1
1.1.1. 超導體之發展背景 1
1.1.2. 高溫超導量子干涉元件( High-TC Superconducting Quantum Interference Devices )之發展與應用 2
1.1.3. 人造晶界之製作 2
1.2 文獻探討 5
1.2.1. 雙晶基板的缺陷對超導薄膜之影響 [25] 5
1.2.2. 垂直式三明治結構之穿隧元件 [26] [27] 6
1.3 研究動機 8
Chapter 2 理論背景與原理介紹 9
2.1超導體特性 9
2.1.1 臨界溫度TC之零電現象 9
2.1.2 邁斯納效應(Meissner Effect) 10
2.2 約瑟夫森結(Josephson junction) [34] [35] [36] 11
2.2.2 約瑟夫森方程 11
2.2.3 RS(C)J模型 13
2.2.4 直流超導干涉元件(dc-SQUID) 15
Chapter 3 實驗步驟與方法 19
3.1 實驗流程 19
3.2 垂直式三明治結製作方法 20
3.3 基板選擇與清洗 21
3.4 化學研磨 22
3.5 射頻磁控濺鍍法(RF-Magnetron Sputtering ) 23
3.6 樣品製作 24
3.5.1 靶材製作 24
3.5.2 絕緣層選擇 24
3.5.3 薄膜製程 25
3.7 黃光微影製程 26
3.8 離子蝕刻 28
3.9 量測分析儀器 29
4.3.1 電阻-溫度量測系統 29
4.3.2 原子力顯微鏡(AFM) 30
4.3.3 低溫量測系統 31
4.3.4 超導量子干涉元件量測系統 31
Chapter 4 實驗結果與討論 33
4.1 化學研磨之表面形貌結構 33
4.1.1 化學研磨拋光 33
4.2 釔鋇銅氧之薄膜成長 35
4.2.1. 釔鋇銅氧薄膜之電性量測 35
4.2.2. 釔鋇銅氧薄膜之表面形貌 36
4.3 垂直式三明治之元件製作 38
4.3.1 SQUID圖形 38
4.3.2 SQUID元件量測 39
4.3.3 SQUID元件之高壓退火處理 40
4.3.4 SQUID之I-V、V-Φ量測 42
4.3.5 Direct-coupled之有效面積量測 44
Chapter 5 結論 46
Reference 47
dc.language.isozh-TW
dc.title垂直式三明治YBCO/CeO2/YBCO超導量子干涉元件之製作與特性研究zh_TW
dc.titleFabrication and Characterization of Sandwich-type YBCO/CeO2/YBCO Superconducting Quantum Interference Devicesen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖書賢(Shu-hsien Liao),陳昭翰(Jau-Han Chen)
dc.subject.keyword射頻磁控濺鍍,高溫超導釔鋇銅氧,三明治結構,超導量子干涉元件,zh_TW
dc.subject.keywordRF-magnetron sputter,High-TC superconducting YBCO,Sandwich-type structure,SQUIDs,en
dc.relation.page50
dc.identifier.doi10.6342/NTU201803770
dc.rights.note未授權
dc.date.accepted2018-08-16
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved