Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21951
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王立民(Li-Min Wang)
dc.contributor.authorJia-Wei Huangen
dc.contributor.author黃家瑋zh_TW
dc.date.accessioned2021-06-08T03:54:42Z-
dc.date.copyright2018-08-18
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citation[1] Hall, E. H., 1879, Am. J. Math. 2, 287
[2] T. Ando; Y. Matsumoto; Y. Uemura (1975). J. Phys. Soc. Jpn. 39 (2): 279–288.
[3] 2D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982)
[4] JE Hirsch - Physical Review Letters, 1999
[5] Ezawa, Zyun F. (2013). Quantum Hall Effects: Recent Theoretical and Experimental Developments (3rd ed.). World Scientific.
[6] Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H., & Ong, N. P. (2010). Anomalous hall effect. Reviews of modern physics, 82(2), 1539.
[7] N. Nagaosa et al., Rev. Mod. Phys. 82, 1539 (2010).
[8] J. Ye et al., Phys. Rev. Lett. 83, 3737 (1999).
[9] M. Onoda, G. Tatara, and N. Nagaosa, J. Phys. Soc. Jpn.73, 2624 (2004).
[10] P. Bruno, V. K. Dugaev, and M. Taillefumier, Phys. Rev.Lett. 93, 096806 (2004).
[11] Herschbach, C., Fedorov, D. V., Mertig, I., Gradhand, M., Chadova, K., Ebert, H., & Ködderitzsch, D. (2013). Insight into the skew-scattering mechanism of the spin Hall effect: Potential scattering versus spin-orbit scattering. Physical Review B, 88(20), 205102.
[12] Taguchi, Y., Oohara, Y., Yoshizawa, H., Nagaosa, N., & Tokura, Y. (2001). Spin chirality, Berry phase, and anomalous Hall effect in a frustrated ferromagnet. Science, 291(5513), 2573-2576.
[13] T. S. Majmudar, M. Sperl, S. Luding, and R. P. Behringer Phys. Rev. Lett. 98, 058001 (2007)
[14] Neubauer, A., Pfleiderer, C., Binz, B., Rosch, A., Ritz, R., Niklowitz, P. G., & Böni, P. (2009). Topological Hall effect in the A phase of MnSi. Physical review letters, 102(18), 186602.
[15] Kanazawa, N., Onose, Y., Arima, T., Okuyama, D., Ohoyama, K., Wakimoto, S., ... & Tokura, Y. (2011). Large topological Hall effect in a short-period helimagnet MnGe. Physical review letters, 106(15), 156603.
[16] Li, Y., Kanazawa, N., Yu, X. Z., Tsukazaki, A., Kawasaki, M., Ichikawa, M., ... & Tokura, Y. (2013). Robust formation of skyrmions and topological Hall effect anomaly in epitaxial thin films of MnSi. Physical review letters, 110(11), 117202.
[17] Takada, K., Sakurai, H., Takayama-Muromachi, E., Izumi, F., Dilanian, R. A., & Sasaki, T. (2003). Superconductivity in two-dimensional CoO 2 layers. Nature, 422(6927), 53.
[18] Schaak, R. E., Klimczuk, T., Foo, M. L., & Cava, R. J. (2003). Superconductivity phase diagram of Na x CoO 2· 1.3 H 2 O. Nature, 424(6948), 527.
[19] Shibasaki, S., Nakano, T., Terasaki, I., Yubuta, K., & Kajitani, T. (2010). Transport properties of the layered Rh oxide K0. 49RhO2. Journal of Physics: Condensed Matter, 22(11), 115603.
[20] Y. Saeed, N. Singh and U. Schwingenschlogl, Adv. Funct. Mater., 2012, 22, 2792–2796
[21] Yang, Y., Luo, Z., Wu, H., Xu, Y., Li, R. W., Pennycook, S. J., ... & Wu, Y. (2018). Anomalous Hall magnetoresistance in a ferromagnet. Nature communications, 9(1), 2255.
[22] Zhang, B. B., Dong, S. T., Chen, Y. B., Zhang, L. Y., Zhou, J., Yao, S. H., ... & Chen, Y. F. (2013). High temperature solution growth, chemical depotassiation and growth mechanism of K x RhO 2 crystals. CrystEngComm, 15(25), 5050-5056.
[23] Zhou, J., Liang, Q. F., Weng, H., Chen, Y. B., Yao, S. H., Chen, Y. F., ... & Guo, G. Y. (2016). Predicted Quantum Topological Hall Effect and Noncoplanar Antiferromagnetism in K 0.5 RhO 2. Physical review letters, 116(25), 256601.
[24] Firesquall Vector: Jon C - File:Triangular frustration.png
[25] Bozorth, R. M. (1993). Ferromagnetism. Ferromagnetism, by Richard M. Bozorth, pp. 992. ISBN 0-7803-1032-2. Wiley-VCH, August 1993., 992.
[26] Anderson, P. W. (1950). Antiferromagnetism. Theory of superexchange interaction. Physical Review, 79(2), 350.
[27] Jackson, L. C. (1924). I.—Investigations on paramagnetism at low temperatures. Phil. Trans. R. Soc. Lond. A, 224(616-625), 1-48.
[28] Darwin, C. G. (1931, January). The diamagnetism of the free electron. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 27, No. 1, pp. 86-90). Cambridge University Press.
[29] Néel, L. (1948). Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann. Phys, 3, 137-198.
[30] Vignale, G. (2010). Ten years of spin Hall effect. Journal of superconductivity and novel magnetism, 23(1), 3.
[31] Cage, M. E., Klitzing, K., Chang, A. M., Duncan, F., Haldane, M., Laughlin, R. B., ... & Thouless, D. J. (2012). The quantum Hall effect. Springer Science & Business Media.
[32] Xiao, D., Chang, M. C., & Niu, Q. (2010). Berry phase effects on electronic properties. Reviews of modern physics, 82(3), 1959.
[33] Park, J. Y., Rosenblatt, S., Yaish, Y., Sazonova, V., Üstünel, H., Braig, S., ... & McEuen, P. L. (2004). Electron− phonon scattering in metallic single-walled carbon nanotubes. Nano letters, 4(3), 517-520.
[34] Nozieres, P. (1974). A “Fermi-liquid” description of the Kondo problem at low temperatures. Journal of low température physics, 17(1-2), 31-42.
[35] Kaveh, M., & Wiser, N. (1971). Failure of the Bloch T 5 Law for the Low-Temperature Electrical Resistivity of Metals. Physical Review Letters, 26(11), 635.
[36] Mott, N. F. (1968). Metal-insulator transition. Reviews of Modern Physics, 40(4), 677.
[37] Mott, N. F. (1949). The basis of the electron theory of metals, with special reference to the transition metals. Proceedings of the Physical Society. Section A, 62(7), 416.
[38] Rivadulla, F., Zhou, J. S., & Goodenough, J. B. (2003). Electron scattering near an itinerant to localized electronic transition. Physical Review B, 67(16), 165110.
[39] SwissFEL Science Case
[40] Bragg, W. L. (1913). The structure of some crystals as indicated by their diffraction of X-rays. Proc. R. Soc. Lond. A, 89(610), 248-277.
[41] Koshibae, W., Oguri, A., & Maekawa, S. (2007). Hall effect in Co O 2 layers with a hexagonal structure. Physical Review B, 75(20), 205115.
[42] Koshibae, W., & Maekawa, S. (2003). Electronic State of a C o O 2 Layer with Hexagonal Structure: A Kagomé Lattice Structure in a Triangular Lattice. Physical review letters, 91(25), 257003.
[43] Kanazawa, N., Onose, Y., Arima, T., Okuyama, D., Ohoyama, K., Wakimoto, S., ... & Tokura, Y. (2011). Large topological Hall effect in a short-period helimagnet MnGe. Physical review letters, 106(15), 156603.
[44] Eng, H. W., Limelette, P., Prellier, W., Simon, C., & Frésard, R. (2006). Unconventional Hall effect in oriented Ca 3 Co 4 O 9 thin films. Physical Review B, 73(3), 033403.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21951-
dc.description.abstract本研究以助熔劑成長法合成單晶鉀銠氧(KxRhO2)並且用能量散射光譜儀做元素分析,計算出樣品中鉀含量x的值。我們合成出兩種不同鉀含量的樣品- K0.52RhO2、K0.42RhO2並研究其電性、磁性以及霍爾效應。我們使用X射線繞射儀來量測其c軸晶格長度,K0.52RhO2、K0.42RhO2的c軸晶格長度分別為12.26 Å與12.28 Å。
接著我們試著把KxRhO2浸在鹽酸中試著讓水分子進入RhO2層之間,試著改變其結構看是否會出現超導現象。在水分子進入結構之後,其c軸晶格常數增加為13.67 Å,其晶格常數的改變來自於水分子進入結構中,導致c軸晶格常數增加。
在電性量測過程中,我們發現了電阻率與溫度間特別的關係。在K0.52RhO2與K0.42RhO2中低溫時出現了電阻率與溫度平方關係,高溫時電阻率與溫度則呈現1.5次方關係,其轉變溫度分別為177.46 K與168.53 K;加入水分子的樣品則在低溫即出現了電阻率與溫度1.5次方關係,當高溫時則轉變為電阻率與溫度呈線性關係,此一特別的物理現象可以鍵長漲落效應解釋之。
最後我們根據期刊Phys. Rev. Lett. 116, 256601(2016) 文章其理論預期非共面的自旋會出現拓樸霍爾效應,因此我們做了K0.52RhO2單晶拓樸霍爾效應的量測與計算,並觀察到類似拓樸霍爾效應的現象。
zh_TW
dc.description.abstractWe synthesised single KxRhO2 crystals with a flux growth method and determine the composition of potassium with Energy-dispersive X-ray spectroscopy (EDS). We have synthesised two samples with different composition of potassium, K0.52RhO2 and K0.42RhO2, and study the magnetotransport properties and Hall effect of samples. We measured the lattice parameter of c-axis with X-ray Diffraction (XRD), and the lattice parameters of c-axis of K0.52RhO2 and K0.42RhO2 are 12.26 Å and 12.28 Å, respectively.
Then we tried to make H2O insert into the structure of KxRhO2 and wonder whether the KxRhO2 become superconducting. The lattice parameter of c-axis increased from 12.26 Å to 13.67 Å when the water was inserted into the RhO2 layer. The increasing in parameter of c-axis is due to the insertion of H2O molecules into the KxRhO2 structure.
In electrical measurements, we found a special relationship between resistivity and temperature. In K0.52RhO2 and K0.42RhO2, the resistivity ρ(T) is proportional to T2 at low temperatures and is proportional to T1.5 at high temperatures. The transition temperature of K0.52RhO2 and K0.42RhO2 are 177.46 K and 168.53 K, respectively. This special phenomenon can be explained by locally cooperative bond-length fluctuation. The resistivity of samples containing the water is found to be proportional to the T1.5 at low temperatures and be proportional to the T1 at high temperatures.
Finally, based on the article of Phys. Rev. Lett. 116, 256601(2016),” Predicted Quantum Topological Hall Effect and Noncoplanar Antiferromagnetism K0.5RhO2”, which theoretically predicted that the topological hall effect can occur in non-coplanar spins, we did the measurement and calculation of topological hall effect in K0.52RhO2 single crystals. A topological-hall-effect-like phenomenon was observed.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:54:42Z (GMT). No. of bitstreams: 1
ntu-107-R05245014-1.pdf: 3555011 bytes, checksum: 54a3bdde80f1ea3ac9c855fc6f9d57ba (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xii
Chapter 1 序論 1
1.1 拓樸霍爾效應 1
1.2 文獻回顧 2
1.2.1 拓樸霍爾效應 2
1.2.2 KxRhO2文獻回顧 4
1.2.3 理論預測K0.5RhO2發生拓樸霍爾效應 6
1.3 研究動機 8
Chapter 2 理論背景與原理介紹 9
2.1 磁性介紹 9
2.1.1 鐵磁性(Ferromagnetism) 9
2.1.2 反鐵磁性(Antiferromagnetism) 9
2.1.3 順磁性(Paramagnetism) 9
2.1.4 抗磁性(Diamagnetism) 10
2.1.5 亞鐵磁性(Ferrimagnetism) 10
2.2 霍爾效應(Hall effect) 11
2.2.1 霍爾效應(Ordinary Hall effect) 11
2.2.2 異常霍爾效應(Anomalous Hall effect) 12
2.2.3 拓樸霍爾效應(Topological Hall effect) 14
2.3 電阻率與溫度次方關係 15
2.3.1 莫特絕緣體 15
2.3.2 莫特相變 16
2.3.3 locally cooperative bond-length fluctuation 16
Chapter 3 實驗方法 22
3.1 實驗流程 22
3.2 KxRhO2單晶樣品合成 23
3.2.1 氧化銠製作 23
3.2.2 製作KxRhO2單晶樣品 23
3.3 KxRhO2單晶樣品層間距離之改變 24
3.4 量測系統 26
3.4.1 XRD 26
3.4.2 EDS 28
3.5 SQUID 量測系統 31
Chapter 4 結果與討論 32
4.1 KxRhO2 x=0.52,x=0.42單晶樣品之研究 32
4.1.1 樣品結構 32
4.1.2 ρxy與磁場關係 33
4.1.3 ρxy與溫度關係 34
4.1.4 RH與溫度關係 35
4.1.5 載子濃度與溫度關係 37
4.1.6 載子遷移率與溫度關係 38
4.1.7 磁阻(MR)與磁場關係 38
4.1.8 磁阻(MR)與溫度關係 40
4.1.9 磁化強度與溫度關係 41
4.1.10 磁化強度與磁場關係 42
4.2 KxRhO2層間含水分子之特性研究 43
4.2.1 樣品結構 43
4.2.2 ρxy與磁場關係 45
4.2.3 磁阻(MR)與磁場關係 47
4.3 電阻與溫度次方關係 50
4.4 拓樸霍爾效應分析 56
Chapter 5 結論 59
REFERENCE 60
dc.language.isozh-TW
dc.title鉀銠氧單晶之異常磁傳輸特性研究zh_TW
dc.titleAnomalous Magnetotransport Characteristics of
Single Crystal KxRhO2
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖書賢,陳昭翰
dc.subject.keyword助熔劑成長法,鉀銠氧,電阻-溫度相依性,拓樸霍爾效應,非共平面自旋,zh_TW
dc.subject.keywordflux growth method,KxRhO2,topological hall effect,temperature dependence of resistivity,non-coplanar spins,en
dc.relation.page62
dc.identifier.doi10.6342/NTU201803508
dc.rights.note未授權
dc.date.accepted2018-08-16
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理研究所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
3.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved