請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21944
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李慧梅 | |
dc.contributor.author | Ming-Hung Kao | en |
dc.contributor.author | 高銘鴻 | zh_TW |
dc.date.accessioned | 2021-06-08T03:54:21Z | - |
dc.date.copyright | 2018-08-18 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-15 | |
dc.identifier.citation | 1. IARC (2006). Formaldehyde, 2-butoxyethanol and 1-tertbutoxypropan-2-ol. IARC Monogr Eval Carcinog Risks Hum, 88: 1–478. PMID:17366697.
2. New labelling for formaldehyde and styrene, EU, Editor. 2015, EuCIA. 3. Abou Asi, M., C. He, M. Su, D. Xia, L. Lin, H. Deng, Y. Xiong, R. Qiu, and X.-z. Li, Photocatalytic reduction of CO2 to hydrocarbons using AgBr/TiO2 nanocomposites under visible light. Catalysis Today, 2011. 175(1): p. 256-263. 4. Ajmal, A., I. Majeed, R.N. Malik, H. Idriss, and M.A. Nadeem, Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv., 2014. 4(70): p. 37003-37026. 5. Ayrilmis, N., T. Kaptı, A. Gürel, and M. Ohlmeyer, Reducing formaldehyde emission from wood-based panels by modification of UF and MUF resins with condensates obtained from kiln-drying of wood. Holzforschung, 2018. 0(0). 6. Bakker, E. and M. Telting-Diaz, Electrochemical Sensors. Analytical Chemistry, 2002. 74(12): p. 2781-2800. 7. Bessegato, G.G., T.T. Guaraldo, J.F. de Brito, M.F. Brugnera, and M.V.B. Zanoni, Achievements and Trends in Photoelectrocatalysis: from Environmental to Energy Applications. Electrocatalysis, 2015. 6(5): p. 415-441. 8. Carp, O., C.L. Huisman, and A. Reller, Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 2004. 32(1): p. 33-177. 9. Casset, A., C. Marchand, A. Purohit, S. le Calve, B. Uring-Lambert, C. Donnay, P. Meyer, and F. de Blay, Inhaled formaldehyde exposure: effect on bronchial response to mite allergen in sensitized asthma patients. Allergy, 2006. 61(11): p. 1344-50. 10. Chen, C., Y. Zhao, and B. Zhao, Emission Rates of Multiple Air Pollutants Generated from Chinese Residential Cooking. Environ Sci Technol, 2018. 52(3): p. 1081-1087. 11. Daghrir, R., P. Drogui, and D. Robert, Photoelectrocatalytic technologies for environmental applications. Journal of Photochemistry and Photobiology A: Chemistry, 2012. 238: p. 41-52. 12. Dai, K., D. Li, L. Lu, Q. Liu, C. Liang, J. Lv, and G. Zhu, Plasmonic TiO2 /AgBr/Ag ternary composite nanosphere with heterojunction structure for advanced visible light photocatalyst. Applied Surface Science, 2014. 314: p. 864-871. 13. Destaillats, H., R.L. Maddalena, B.C. Singer, A.T. Hodgson, and T.E. McKone, Indoor pollutants emitted by office equipment: A review of reported data and information needs. Atmospheric Environment, 2008. 42(7): p. 1371-1388. 14. Diebold, U. and T.E. Madey, TiO2 by XPS. Surface Science Spectra, 1996. 4(3): p. 227-231. 15. Duong, A., C. Steinmaus, C.M. McHale, C.P. Vaughan, and L. Zhang, Reproductive and developmental toxicity of formaldehyde: a systematic review. Mutat Res, 2011. 728(3): p. 118-38. 16. Erdem, B., R.A. Hunsicker, G.W. Simmons, E.D. Sudol, V.L. Dimonie, and M.S. El-Aasser, XPS and FTIR Surface Characterization of TiO2 Particles Used in Polymer Encapsulation. Langmuir, 2001. 17(9): p. 2664-2669. 17. Fagan, P., P. Pokhrel, T.A. Herzog, E.T. Moolchan, K.D. Cassel, A.A. Franke, X. Li, I. Pagano, D.R. Trinidad, K.K. Sakuma, K. Sterling, D. Jorgensen, T. Lynch, C. Kawamoto, M.C. Guy, I. Lagua, S. Hanes, L.A. Alexander, M.S. Clanton, C. Graham-Tutt, T. Eissenberg, and W. Addictive Carcinogens, Sugar and Aldehyde Content in Flavored Electronic Cigarette Liquids. Nicotine Tob Res, 2017. 18. Feng, B., Z. Wu, J. Liu, K. Zhu, Z. Li, X. Jin, Y. Hou, Q. Xi, M. Cong, P. Liu, and Q. Gu, Combination of ultrafast dye-sensitized-assisted electron transfer process and novel Z-scheme system: AgBr nanoparticles interspersed MoO 3 nanobelts for enhancing photocatalytic performance of RhB. Applied Catalysis B: Environmental, 2017. 206: p. 242-251. 19. Fernando, K.A.S., S. Sahu, Y. Liu, W.K. Lewis, E.A. Guliants, A. Jafariyan, P. Wang, C.E. Bunker, and Y.-P. Sun, Carbon Quantum Dots and Applications in Photocatalytic Energy Conversion. ACS Applied Materials & Interfaces, 2015. 7(16): p. 8363-8376. 20. Franz, A.W., H. Kronemayer, D. Pfeiffer, R.D. Pilz, G. Reuss, W. Disteldorf, A.O. Gamer, and A. Hilt, Formaldehyde, in Ullmann's Encyclopedia of Industrial Chemistry. 2016. 21. Fujishima, A. and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 238: p. 37. 22. Garcia-Segura, S. and E. Brillas, Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017. 31: p. 1-35. 23. Georgieva, J., E. Valova, S. Armyanov, N. Philippidis, I. Poulios, and S. Sotiropoulos, Bi-component semiconductor oxide photoanodes for the photoelectrocatalytic oxidation of organic solutes and vapours: a short review with emphasis to TiO2-WO3 photoanodes. J Hazard Mater, 2012. 211-212: p. 30-46. 24. Gupta, S. and M. Tripathi, A review on the synthesis of TiO2 nanoparticles by solution route. Open Chemistry, 2012. 10(2). 25. Han, Z., V.-W. Chang, X. Wang, T.-T. Lim, and L. Hildemann, Experimental study on visible-light induced photocatalytic oxidation of gaseous formaldehyde by polyester fiber supported photocatalysts. Chemical Engineering Journal, 2013. 218: p. 9-18. 26. He, J., D.W. Shao, L.C. Zheng, L.J. Zheng, D.Q. Feng, J.P. Xu, X.H. Zhang, W.C. Wang, W.H. Wang, F. Lu, H. Dong, Y.H. Cheng, H. Liu, and R.K. Zheng, Construction of Z-scheme Cu 2 O/Cu/AgBr/Ag photocatalyst with enhanced photocatalytic activity and stability under visible light. Applied Catalysis B: Environmental, 2017. 203: p. 917-926. 27. Herrmann, J.-M., Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 1999. 53(1): p. 115-129. 28. Hoffmann, M.R., S.T. Martin, W. Choi, and D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 1995. 95(1): p. 69-96. 29. Hou, W. and S.B. Cronin, A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Advanced Functional Materials, 2013. 23(13): p. 1612-1619. 30. Huang, S., W. Wei, L.B. Weschler, T. Salthammer, H. Kan, Z. Bu, and Y. Zhang, Indoor formaldehyde concentrations in urban China: Preliminary study of some important influencing factors. Sci Total Environ, 2017. 590-591: p. 394-405. 31. Huang, Z.F., L. Pan, J.J. Zou, X. Zhang, and L. Wang, Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress. Nanoscale, 2014. 6(23): p. 14044-63. 32. Jansson, I., S. Suárez, F.J. Garcia-Garcia, and B. Sánchez, Zeolite–TiO 2 hybrid composites for pollutant degradation in gas phase. Applied Catalysis B: Environmental, 2015. 178: p. 100-107. 33. Jensen, R.P., W. Luo, J.F. Pankow, R.M. Strongin, and D.H. Peyton, Hidden Formaldehyde in E-Cigarette Aerosols. New England Journal of Medicine, 2015. 372(4): p. 392-394. 34. Kakuma, Y., A.Y. Nosaka, and Y. Nosaka, Difference in TiO(2) photocatalytic mechanism between rutile and anatase studied by the detection of active oxygen and surface species in water. Phys Chem Chem Phys, 2015. 17(28): p. 18691-8. 35. Kibanova, D., M. Sleiman, J. Cervini-Silva, and H. Destaillats, Adsorption and photocatalytic oxidation of formaldehyde on a clay-TiO2 composite. Journal of Hazardous Materials, 2012. 211-212: p. 233-239. 36. Kim, K.H., S.A. Jahan, and J.T. Lee, Exposure to formaldehyde and its potential human health hazards. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev, 2011. 29(4): p. 277-99. 37. Klepeis, N.E., W.C. Nelson, W.R. Ott, J.P. Robinson, A.M. Tsang, P.Switzer, J.V.Behar, S.C.Hern, W.H. Engelmann, The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Sci Environ Epidemiol, 2001. 11: p. 231-252. 38. Kwon, S.C., I. Kim, J. Song, and J. Park, Does formaldehyde have a causal association with nasopharyngeal cancer and leukaemia? Ann Occup Environ Med, 2018. 30: p. 5. 39. Lee, S.-C. and B. Wang, Characteristics of emissions of air pollutants from burning of incense in a large environmental chamber. Atmospheric Environment, 2004. 38(7): p. 941-951. 40. Li, S., J.L. Banyasz, M.E. Parrish, J. Lyons-Hart, and K.H. Shafer, Formaldehyde in the gas phase of mainstream cigarette smoke. Journal of Analytical and Applied Pyrolysis, 2002. 65(2): p. 137-145. 41. Liang, W., M. Lv, and X. Yang, The combined effects of temperature and humidity on initial emittable formaldehyde concentration of a medium-density fiberboard. Building and Environment, 2016. 98: p. 80-88. 42. Liu, N., X. Chen, J. Zhang, and J.W. Schwank, A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catalysis Today, 2014. 225: p. 34-51. 43. Liu, R., J. Wang, J. Zhang, S. Xie, X. Wang, and Z. Ji, Honeycomb-like micro-mesoporous structure TiO 2 /sepiolite composite for combined chemisorption and photocatalytic elimination of formaldehyde. Microporous and Mesoporous Materials, 2017. 248: p. 234-245. 44. Liu, X., D. Zhang, B. Guo, Y. Qu, G. Tian, H. Yue, and S. Feng, Recyclable and visible light sensitive Ag–AgBr/TiO2: Surface adsorption and photodegradation of MO. Applied Surface Science, 2015. 353: p. 913-923. 45. Liu, Y., C. Xie, H. Li, H. Chen, Y. Liao, and D. Zeng, Low bias photoelectrocatalytic (PEC) performance for organic vapour degradation using TiO2/WO3 nanocomposite. Applied Catalysis B: Environmental, 2011a. 102(1-2): p. 157-162. 46. Liu, Y., C. Xie, T. Zou, J. Li, H. Chen, and D. Zeng, Applied low bias with high frequency for enhancing mineralization ability of WO3 as visible-light-driven photocatalyst in gas phase. Catalysis Communications, 2011b. 16(1): p. 180-183. 47. Maria Dalcin Fornari, A., M.B. de Araujo, C. Bergamin Duarte, G. Machado, S.R. Teixeira, and D.E. Weibel, Photocatalytic reforming of aqueous formaldehyde with hydrogen generation over TiO2 nanotubes loaded with Pt or Au nanoparticles. International Journal of Hydrogen Energy, 2016. 41(27): p. 11599-11607. 48. Obee, T.N. and R.T. Brown, TiO2 Photocatalysis for Indoor Air Applications: Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene, and 1,3-Butadiene. Environmental Science & Technology, 1995. 29(5): p. 1223-1231. 49. Obee, T.N. and S.O. Hay, Effects of Moisture and Temperature on the Photooxidation of Ethylene on Titania. Environmental Science & Technology, 1997. 31(7): p. 2034-2038. 50. Peng, J. and S. Wang, Performance and characterization of supported metal catalysts for complete oxidation of formaldehyde at low temperatures. Applied Catalysis B: Environmental, 2007. 73(3): p. 282-291. 51. Portela, R., I. Jansson, S. Suarez, M. Villarroel, B. Sanchez, and P. Avila, Natural silicate-TiO2 hybrids for photocatalytic oxidation of formaldehyde in gas phase. Chemical Engineering Journal, 2017. 310: p. 560-570. 52. Redlich, C.A., J. Sparer, and M.R. Cullen, Sick-building syndrome. The Lancet, 1997. 349(9057): p. 1013-1016. 53. Regonini, D., C.R. Bowen, A. Jaroenworaluck, and R. Stevens, A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Materials Science and Engineering: R: Reports, 2013. 74(12): p. 377-406. 54. Salthammer, T., The formaldehyde dilemma. Int J Hyg Environ Health, 2015. 218(4): p. 433-6. 55. Salthammer, T., S. Mentese, and R. Marutzky, Formaldehyde in the Indoor Environment. Chemical Reviews, 2010. 110(4): p. 2536-2572. 56. Schweizer, C., R.D. Edwards, L. Bayer-Oglesby, W.J. Gauderman, V. Ilacqua, M.J. Jantunen, H.K. Lai, M. Nieuwenhuijsen, and N. Kunzli, Indoor time-microenvironment-activity patterns in seven regions of Europe. J Expo Sci Environ Epidemiol, 2007. 17(2): p. 170-81. 57. Selcuk, H., W. Zaltner, J.J. Sene, M. Bekbolet, and M.A. Anderson, Photocatalytic and Photoelectrocatalytic Performance of 1% Pt Doped TiO2 for the Detoxification of Water. Journal of Applied Electrochemistry, 2004. 34(6): p. 653-658. 58. Skoog, D.A., Principles of instrumental analysis. 6th ed. / Douglas A. Skoog, F. James Holler, Stanley R. Crouch.. ed, ed. F.J. Holler and S.R. Crouch. 2007, Belmont, CA: Belmont, CA : Thomson Brooks/Cole. 59. Su, Y.-f., G.-B. Wang, D.T.F. Kuo, M.-l. Chang, and Y.-h. Shih, Photoelectrocatalytic degradation of the antibiotic sulfamethoxazole using TiO2/Ti photoanode. Applied Catalysis B: Environmental, 2016. 186: p. 184-192. 60. Sui, Y., C. Su, X. Yang, J. Hu, and X. Lin, Ag-AgBr nanoparticles loaded on TiO2 nanofibers as an efficient heterostructured photocatalyst driven by visible light. Journal of Molecular Catalysis A: Chemical, 2015. 410: p. 226-234. 61. Sun, S., J. Ding, J. Bao, C. Gao, Z. Qi, and C. Li, Photocatalytic Oxidation of Gaseous Formaldehyde on TiO2: An In Situ DRIFTS Study. Catalysis Letters, 2010. 137(3): p. 239-246. 62. Takeuchi, M., J. Deguchi, S. Sakai, and M. Anpo, Effect of H2O vapor addition on the photocatalytic oxidation of ethanol, acetaldehyde and acetic acid in the gas phase on TiO2 semiconductor powders. Applied Catalysis B: Environmental, 2010. 96(1-2): p. 218-223. 63. Tang, X., Y. Bai, A. Duong, M.T. Smith, L. Li, and L. Zhang, Formaldehyde in China: production, consumption, exposure levels, and health effects. Environ Int, 2009. 35(8): p. 1210-24. 64. Wang, D., Y. Duan, Q. Luo, X. Li, J. An, L. Bao, and L. Shi, Novel preparation method for a new visible light photocatalyst: mesoporous TiO2 supported Ag/AgBr. Journal of Materials Chemistry, 2012. 22(11): p. 4847. 65. Wang, H., L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, and X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev, 2014. 43(15): p. 5234-44. 66. Wang, S., J.-H. Yun, B. Luo, T. Butburee, P. Peerakiatkhajohn, S. Thaweesak, M. Xiao, and L. Wang, Recent Progress on Visible Light Responsive Heterojunctions for Photocatalytic Applications. Journal of Materials Science & Technology, 2017. 33(1): p. 1-22. 67. Wang, X., Y. Tang, Z. Chen, and T.-T. Lim, Highly stable heterostructured Ag–AgBr/TiO2 composite: a bifunctional visible-light active photocatalyst for destruction of ibuprofen and bacteria. Journal of Materials Chemistry, 2012. 22(43): p. 23149. 68. Wolkoff, P. and G.D. Nielsen, Non-cancer effects of formaldehyde and relevance for setting an indoor air guideline. Environ Int, 2010. 36(7): p. 788-99. 69. Wu, W., J. Changzhong, and V.A. Roy, Recent progress in magnetic iron oxide-semiconductor composite nanomaterials as promising photocatalysts. Nanoscale, 2015. 7(1): p. 38-58. 70. Xiong, J., P. Zhang, S. Huang, and Y. Zhang, Comprehensive influence of environmental factors on the emission rate of formaldehyde and VOCs in building materials: Correlation development and exposure assessment. Environ Res, 2016. 151: p. 734-741. 71. Yang, L., Z. Li, H. Jiang, W. Jiang, R. Su, S. Luo, and Y. Luo, Photoelectrocatalytic oxidation of bisphenol A over mesh of TiO 2 /graphene/Cu 2 O. Applied Catalysis B: Environmental, 2016. 183: p. 75-85. 72. Yang, T.-T., Y.M. Kuo, H.F. Hung, R.H. Shie, and P. Chang, Gas Pollutant Emissions from Smoldering Incense Using FTIR. Aerosol and Air Quality Research, 2007. 7(3): p. 417-431. 73. Yang, Y., W. Guo, Y. Guo, Y. Zhao, X. Yuan, and Y. Guo, Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/g-C(3)N(4) with enhanced visible-light photocatalytic activity. J Hazard Mater, 2014. 271: p. 150-9. 74. Zang, Y. and R. Farnood, Photocatalytic activity of AgBr/TiO2 in water under simulated sunlight irradiation. Applied Catalysis B: Environmental, 2008. 79(4): p. 334-340. 75. Zhang, J., W. Chen, J. Li, S. Yu, and W. Zhao, VOCs and Particulate Pollution due to Incense Burning in Temples, China. Procedia Engineering, 2015. 121: p. 992-1000. 76. Zhang, Y., J. Mo, Y. Li, J. Sundell, P. Wargocki, J. Zhang, J.C. Little, R. Corsi, Q. Deng, M.H.K. Leung, L. Fang, W. Chen, J. Li, and Y. Sun, Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review. Atmospheric Environment, 2011. 45(26): p. 4329-4343. 77. Zhang, Y., Z.-R. Tang, X. Fu, and Y.-J. Xu, Nanocomposite of Ag–AgBr–TiO2 as a photoactive and durable catalyst for degradation of volatile organic compounds in the gas phase. Applied Catalysis B: Environmental, 2011. 106(3-4): p. 445-452. 78. 作業環境有害物暴露調查與對策技術資料,2001,行政院勞工委員會勞工安全研究所。 79. 室內空氣品質管理法,2011,中華民國行政院環保署。 80. 吳奉書,室內木炭燃燒產生空氣污染物之研究, 環境工程學研究所,2014, 國立臺灣大學:台北市。 81. 李佩芸,高靈敏可攜式甲醛氣體感測器之研發與應用,化學系所,2014, 國立中興大學:台中市。 82. 杜紹輔,室內燒烤空氣污染物排放因子之研究,環境工程學研究所,2015, 國立臺灣大學:台北市。 83. 林冠沂,利用蜂巢狀光觸媒處理甲醛之研究, 環境工程學研究所,2013, 國立臺灣大學:台北市。 84. 陳亭穆,二氧化鈦光觸媒分解甲醛之催化動力學研究,化學工程學系,2005, 國立清華大學:新竹市。 85. 陳震宇,室內木質建材甲醛逸散之研究,環境工程學研究所,2001,國立臺灣大學:台北市. 86. 賴曉芳,光觸媒二氧化鈦奈米材料的應用 第一部分:摻雜奈米金於二氧化鈦應用於染料敏化太陽能電池 第二部分:製備氧化鈀/二氧化鈦奈米材料感測甲醛氣體之研究,應用化學系. 2014,靜宜大學:台中市。 87. 繆昀哲,燒烤餐飲油煙空氣污染物排放係數研究,環境工程學研究所.,2017, 國立臺灣大學: 台北市。 88. 顏佑庭,以改質二氧化鈦光電催化處理室內甲苯之研究, 環境工程學研究所,2017, 國立臺灣大學: 台北市。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21944 | - |
dc.description.abstract | 本國於2012年起實施室內空氣品質管理法,並陸續公告「應符合室內空氣品質管理法之第一批公告場所」及「應符合室內空氣品質管理法之第二批公告場所」,其中甲醛在16類公告場所中皆被列為管制項目。而常見的甲醛室內環境來源廣泛,包括合板、油漆、隔音材料、壁紙、地毯、室內燃燒行為及香菸,都有可能釋放甲醛。甲醛被國際癌症研究署(International Agency for Research on Cancer, IARC)分類為致癌物質,長期暴露可能造成鼻咽癌、白血病、血液淋巴腫瘤等疾病。而針對室內甲醛處理方式,仍以吸附材為主,然吸附材使用受限於吸附容量之限制,並有再脫附之可能,因此希望開發可長期使用的光觸媒降解方式。
本研究使用實驗室研發之蜂巢狀光電反應器,披覆Ag/AgBr/TiO2改質觸媒及P25- TiO2進行甲醛降解試驗。而實驗結果顯示,在停留時間3秒、進流濃度1 ppm之條件下,Ag/AgBr/TiO2觸媒於照射紫外光或可見光之條件下,可達到92.8~96.8%之甲醛轉化率,出流濃度可符合本國室內空氣品質標準,而P25-TiO2對應之轉化率僅為74.41%;停留時間3秒、進流濃度2 ppm,Ag/AgBr/TiO2之甲醛轉化率介於90.3~93.2%、P25-TiO2之轉化率為79.3%;停留時間1秒、進流濃度1 ppm,Ag/AgBr/TiO2轉化率轉化率於不同光源約為87.5%及91.3%、P25-TiO2轉化率為38.9%;停留時間1秒、進流濃度 2 ppm,Ag/AgBr/TiO2處理轉化率約為79.9%、P25-TiO2轉化率為58.2%。 實驗結果顯示,本實驗所製備之Ag/AgBr/TiO2於實驗條件之濃度區間及停留時間,有優於P25-TiO2之處理效果。整體之甲醛轉化率皆會隨停留時間縮短而降低,但隨濃度提升,P25-TiO2之轉化率提高,而Ag/AgBr/TiO2之轉化率則隨濃度提升而些微降低,可能與較高濃度甲醛能有效提升對P25-TiO2表面擴散速度有關,即P25-TiO2可能較適用於高濃度、高停留時間之降解方式。而光電催化於本實驗並未出現顯著影響,主要原因推測包括停留時間過短、甲醛進流濃度過低,使表面擴散成為速率決定步驟,進而使光電催化延長電洞維持時間之效果無法有效影響反應速率。 單位能源所分解的甲醛,以可見光搭配Ag/AgBr/TiO2處理6 LPM(停留時間1秒)、2 ppm甲醛氣體之46.01 mg /kWh為最優,其次為紫外光搭配Ag/AgBr/TiO2處理同條件甲醛氣體之28.77 mg /kWh次之,其中能量效率差異源自於紫外光燈管耗能較高。以降解甲醛達室內空氣品質為目的,使用可見光做為激發光源為最經濟之選擇,且Ag/AgBr/TiO2效果仍是遠大於未改質之P25-TiO2。 | zh_TW |
dc.description.abstract | Indoor Air Quality Act has been announced by EPA since 2011 in R.O.C. Following administrative ordinances implemented in 2014 and 2017 requested that formaldehyde concentration of indoor air in 16 categories of public place should be monitored and controlled. Formaldehyde is listed as a carcinogenic chemical by IARC(International Agency for Research on Cancer) and IRIS (Integrated Risk Information System) of U.S. EPA, and long term exposure to formaldehyde could result in higher rick to Nasopharyngeal carcinoma, leukemia, Hemolymph tumor, etc. Most common indoor formaldehyde source include plywood, paint, acoustic insulating material and carpet made of material with formaldehyde, and indoor combustion such as cooking and smoking would emit different levels of formaldehyde. However, the most of the available commercial indoor air cleaners are equipped with adsorbent to control indoor VOCs including formaldehyde, which has operating restriction on adsorption capacity and possibility of desorption. Therefore, the focus of this study is to develop an indoor VOCs photocatalysis technique with stable characteristic.
This study uses 2 different photocatalysts including modified Ag/AgBr/TiO2 composites and commercial P25-TiO2 coating on a honeycomb photoelectrocatalytic reactor to degrade formaldehyde in continuous air flow. The results show while operating with 3 sec retention time (RT) and 1 ppm inflow concentration (Cin), Ag/AgBr/TiO2 irradiated by UV and visible light have 92.8~96.8% conversion rate of formaldehyde, and P25-TiO2 has only 74.41%; and RT=3 sec, Cin=2 ppm, conversion rate corresponding to Ag/AgBr/TiO2 and P25-TiO2 are 90.3~93.2% and 79.3%. If the RT decrease to 1 sec, conversion rates of formaldehyde in 1 ppm with Ag/AgBr/TiO2 decreased to 87.5% ~91.3%, and 38.9% for P25-TiO2; in 2 ppm, conversion rates become 79.9% for Ag/AgBr/TiO2 and 58.2% for P25-TiO2. These results indicate that Ag/AgBr/TiO2 has better photocatalytic oxidation efficiency in dealing with formaldehyde in setting conditions of this study. Overall, the conversion rate would decrease with the RT in 2 catalysts, but conversion rate of P25-TiO2 would raise with higher inflow concentration. It could relate to higher surface diffusing rate in higher concentration, which means that P25-TiO2 is suitable for higher concentration and longer RT. However, photoelectrocatalysis didn’t show obvious change in conversion rate with photocatalysis. The major reasons possibly including short RT and low concentration in this study which causes surface diffusing rate to be rate-determining step and means that longer lifetime of excited electron-hole pair in photocatalyst can’t improve the efficiency of photocatalysis. Moreover, Ag/AgBr/TiO2 excited by visible light in this study has the highest energy efficiency to oxidate formaldehyde with 1 second RT and 2 ppm concentration (46.01 mg /kWh), the following combination is Ag/AgBr/TiO2 excited by UV lamp in the same conditions (28.77 mg /kWh). The deviation of energy efficiency is derived from higher energy consumed by UV lamp. It is most economical way to use visible light as energy source for Ag/AgBr/TiO2 to photocatalysis the indoor formaldehyde for the purpose of fitting IAQ. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:54:21Z (GMT). No. of bitstreams: 1 ntu-107-R05541136-1.pdf: 4183201 bytes, checksum: 8b8023d583ff2d5a6594203513a2e103 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 目錄
誌謝 i 摘要 ii 圖目錄 xi 表目錄 xiv 第一章 緒論 - 1 - 1.1 研究緣起 - 1 - 1.2 研究目的 - 4 - 1.3 研究方法 - 4 - 1.4 研究架構 - 5 - 第二章 文獻回顧 - 6 - 2.1 甲醛特性及危害性 - 6 - 2.1.1 甲醛基本特性及用途 - 6 - 2.1.2 甲醛對人體健康危害 - 8 - 2.1.3 室內甲醛來源 - 10 - 2.1.4 各國對於甲醛規範 - 13 - 2.2 光催化反應原理 - 15 - 2.3 光觸媒改質方式 - 19 - 2.3.1 結構改質 - 20 - 2.3.2 複合材料 - 22 - 2.3.3 Ag/AgBr/TiO2光觸媒 - 27 - 2.4 光電催化作用機制 - 31 - 2.5 光觸媒氧化有機物之研究 - 38 - 2.5.1 光催化反應動力模式 - 38 - 2.5.2 光催化反應速率影響因子 - 39 - 2.5.3 光催化甲醛氧化途徑 - 40 - 2.6 氣相甲醛檢驗方式 - 42 - 第三章 實驗器材及設備 - 45 - 3.1 實驗材料 - 45 - 3.1.1 化學藥品 - 45 - 3.1.2 儀器設備 - 45 - 3.1.3 觸媒分析儀器 - 47 - 3.2 光觸媒製備 - 47 - 3.2.1 TiO2觸媒披覆前處理 - 47 - 3.2.2 Ag/AgBr/TiO2光觸媒制備 - 48 - 3.3 光觸媒分析儀器原理 - 48 - 3.3.1 掃描式電子顯微鏡 - 48 - 3.3.2 能量色散X-射線光譜儀 - 49 - 3.3.3 紫外/可見光光譜儀 - 49 - 3.3.4 比表面積分析儀 - 50 - 3.3.5 X射線光電子能譜儀 - 51 - 3.4 實驗系統 - 51 - 3.4.1 空氣供應系統 - 53 - 3.4.2 濕度控制系統 - 53 - 3.4.3 甲醛氣體產生系統 - 53 - 3.4.4 光觸媒反應系統 - 54 - 3.4.5 採樣分析系統 - 56 - 3.5 實驗條件 - 57 - 3.6 實驗結果計算 - 58 - 3.6.1 甲醛轉化率(Conversion, %) - 58 - 3.6.2 甲醛殘餘率(Residual, %) - 59 - 3.6.3 觸媒反應速率(r, oxidation rate) - 59 - 3.6.4 能源效益(energy effectiveness, Ee) - 59 - 3.7 實驗程序 - 60 - 第四章 結果與討論 - 61 - 4.1 光觸媒基本特性分析 - 61 - 4.1.1 比表面積分析結果 - 61 - 4.1.2 SEM-EDS分析結果 - 62 - 4.1.3 XPS分析結果 - 65 - 4.1.4 UV-Visble分析結果 - 67 - 4.2 甲醛氣體產生測試 - 67 - 4.3 TiO2光電催化降解甲醛 - 69 - 4.3.1 甲醛濃度對TiO2光催化之影響 - 72 - 4.3.2 進氣流率對TiO2光催化之影響 - 72 - 4.3.3 光電催化對TiO2光催化之影響 - 73 - 4.4 濕度對於Ag/AgBr/ TiO2降解甲醛之影響 - 73 - 4.5 Ag/AgBr/TiO2光電催化降解甲醛 - 78 - 4.5.1 光源對Ag/AgBr/TiO2光催化之影響 - 84 - 4.5.2 甲醛濃度對Ag/AgBr/TiO2光催化之影響 - 84 - 4.5.3 進氣流率對Ag/AgBr/TiO2光催化之影響 - 85 - 4.5.4 光電催化對Ag/AgBr/TiO2光催化之影響 - 85 - 4.6 Ag/AgBr/TiO2與TiO2光電催化能源效益計算 - 85 - 第五章 建議與結論 - 87 - 5.1 結論 - 87 - 5.2 建議 - 88 - 參考文獻 - 89 - 附錄A - 98 - | |
dc.language.iso | zh-TW | |
dc.title | 以光電反應器搭配改質二氧化鈦降解甲醛之研究 | zh_TW |
dc.title | Photoelectrocatalyic (PEC) Oxidation of Formaldehyde Using PEC Reactor with Modified TiO2 Composite | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 羅金翔,吳致呈 | |
dc.subject.keyword | 甲醛,VOCs降解,光電催化,PEC,P25-TiO2改質,Ag/AgBr/TiO2, | zh_TW |
dc.subject.keyword | formaldehyde,VOCs degradation,Photoelectrocatalyic,Modified P25-TiO2,Ag/AgBr/TiO2, | en |
dc.relation.page | 100 | |
dc.identifier.doi | 10.6342/NTU201803688 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2018-08-16 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 4.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。