Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21934
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林裕彬
dc.contributor.authorKuan-Wei Chenen
dc.contributor.author陳冠維zh_TW
dc.date.accessioned2021-06-08T03:53:51Z-
dc.date.copyright2018-08-19
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citationAhmad, S., & Simonovic, S. P. (2000). System dynamics modeling of reservoir operations for flood management. Journal of Computing in Civil Engineering, 14(3), 190-198.
Ahmad, S., & Simonovic, S. P. (2004). Spatial system dynamics: new approach for simulation of water resources systems. Journal of Computing in Civil Engineering, 18(4), 331-340.
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9), D05109.
Assessment, M. E. (2005). Ecosystem and human well-being: biodiversity synthesis. World Resources Institute, Washington, DC.
Bagstad, K. J., Johnson, G. W., Voigt, B., & Villa, F. (2013). Spatial dynamics of ecosystem service flows: a comprehensive approach to quantifying actual services. Ecosystem Services, 4, 117-125.
Bagstad, K. J., Villa, F., Batker, D., Harrison-Cox, J., Voigt, B., & Johnson, G. W. (2014). From theoretical to actual ecosystem services: mapping beneficiaries and spatial flows in ecosystem service assessments. Ecology and Society, 19(2).
Bagstad, K. J., Villa, F., Johnson, G. W., & Voigt, B. (2011). ARIES–ARtificial Intelligence for Ecosystem Services: a guide to models and data, version 1.0. ARIES report series, 1.
Baw-Puh, Fu (1981). ON THE CALCULATION OF THE EVAPORATION FROM LAND SURFACE [J]. Chinese Journal of Atmospheric Sciences, 1, 002.
Beven, K., & Freer, J. (2001). Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. Journal of hydrology, 249(1-4), 11-29.
Blasone, R. S., Vrugt, J. A., Madsen, H., Rosbjerg, D., Robinson, B. A., & Zyvoloski, G. A. (2008). Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Advances in Water Resources, 31(4), 630-648.
Boehr, D. D., McElheny, D., Dyson, H. J., & Wright, P. E. (2006). The dynamic energy landscape of dihydrofolate reductase catalysis. science, 313(5793), 1638-1642.
Borselli, L., Cassi, P., & Torri, D. (2008). Prolegomena to sediment and flow connectivity in the landscape: a GIS and field numerical assessment. Catena, 75(3), 268-277.
Bras, R. L., & Rodriguez-Iturbe, I. (1985). Random functions and hydrology. Courier Corporation.
Brauman, K. A., Daily, G. C., Duarte, T. K. E., & Mooney, H. A. (2007). The nature and value of ecosystem services: an overview highlighting hydrologic services. Annu. Rev. Environ. Resour., 32, 67-98.
Calle, E. A. D., Miranda, J. A. M., Rodríguez, M. H. O., Martínez, J. F., Agudelo, C. A. R., Madriñan, L. F., ... & Baez, S. E. L. (2017). Objective assessment of ecosystem hydrological services in tropical areas: A Colombian experience in arid and semi-arid zones. Revista Ambiente & Água, 12(3), 365-379.
Cavalli, M., Trevisani, S., Comiti, F., & Marchi, L. (2013). Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology, 188, 31-41.
Chaplin-Kramer, R., Sim, S., Hamel, P., Bryant, B., Noe, R., Mueller, C., ... & Clavreul, J. (2017). Life cycle assessment needs predictive spatial modelling for biodiversity and ecosystem services. Nature Communications, 8.
Chung Kuo-Fang, Hsu Cheng-Te (2016), Past, present and future of alpine flora of Taiwan—Insights from integrating phylogeography and species distribution model of Chaerophyllum involucratum (Apiaceae).
Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., ... & Raskin, R. G. (1997). The value of the world's ecosystem services and natural capital. nature, 387(6630), 253.
Costanza, R., de Groot, R., Braat, L., Kubiszewski, I., Fioramonti, L., Sutton, P., ... & Grasso, M. (2017). Twenty years of ecosystem services: How far have we come and how far do we still need to go?. Ecosystem Services, 28, 1-16.
Coyle, R. G. (1996). System dynamics modelling: a practical approach (Vol. 1). CRC Press.
Daily, G. C., Polasky, S., Goldstein, J., Kareiva, P. M., Mooney, H. A., Pejchar, L., ... & Shallenberger, R. (2009). Ecosystem services in decision making: time to deliver. Frontiers in Ecology and the Environment, 7(1), 21-28.
Dally, G. C., & Power, M. (1997). Nature's services: Societal dependence on natural ecosystems. Nature, 388(6642), 529.
Donohue, R. J., Roderick, M. L., & McVicar, T. R. (2012). Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. Journal of Hydrology, 436, 35-50.
Drewry, J. J., Newham, L. T. H., & Greene, R. S. B. (2011). Index models to evaluate the risk of phosphorus and nitrogen loss at catchment scales. Journal of environmental management, 92(3), 639-649.
Dyson, B., & Chang, N. B. (2005). Forecasting municipal solid waste generation in a fast-growing urban region with system dynamics modeling. Waste management, 25(7), 669-679.
Endreny, T. A., & Wood, E. F. (2003). Watershed weighting of export coefficients to map critical phosphorous loading areas. JAWRA Journal of the American Water Resources Association, 39(1), 165-181.
Feng, Y. Y., Chen, S. Q., & Zhang, L. X. (2013). System dynamics modeling for urban energy consumption and CO 2 emissions: a case study of Beijing, China. Ecological Modelling, 252, 44-52.
Forrester, J. W. (1970). Urban dynamics. IMR; Industrial Management Review (pre-1986), 11(3), 67.
Forrester, J. W. (1994). System dynamics, systems thinking, and soft OR. System dynamics review, 10(2‐3), 245-256.
Forrester, J. W., & Forrester, J. W. (1971). World dynamics (Vol. 59). Cambridge, MA: Wright-Allen Press.
Georgiadis, P., Vlachos, D., & Iakovou, E. (2005). A system dynamics modeling framework for the strategic supply chain management of food chains. Journal of food engineering, 70(3), 351-364.
Haith, D. A., & Shoenaker, L. L. (1987). Generalized Watershed Loading Functions for Stream Flow Nutrients 1. JAWRA Journal of the American Water Resources Association, 23(3), 471-478.
Haith, D. A., Mandel, R., & Wu, R. S. (1992). GWLF, generalized watershed loading functions, version 2.0, user’s manual. Dept. of Agricultural & Biological Engineering, Cornell University, Ithaca, NY.
Heathwaite, A. L., Quinn, P. F., & Hewett, C. J. M. (2005). Modelling and managing critical source areas of diffuse pollution from agricultural land using flow connectivity simulation. Journal of Hydrology, 304(1), 446-461.
He-hai, H. G. R. X. (2007). Uncertainty Analyses of Watershed Hydrological Model Based on GLUE Method [J]. Journal of South China University of Technology (Natural Science Edition), 3, 026.
Homer, J. B., & Hirsch, G. B. (2006). System dynamics modeling for public health: background and opportunities. American journal of public health, 96(3), 452-458.
Karnopp, D. C., Margolis, D. L., & Rosenberg, R. C. (2012). System dynamics: modeling, simulation, and control of mechatronic systems. John Wiley & Sons.
Kim, H., Eykholt, R., & Salas, J. D. (1999). Nonlinear dynamics, delay times, and embedding windows. Physica D: Nonlinear Phenomena, 127(1), 48-60.
Kuai, P., Li, W., & Liu, N. (2015). Evaluating the effects of land use planning for non-point source pollution based on a system dynamics approach in China. PloS one, 10(8), e0135572.
Kubiszewski, I., Costanza, R., Anderson, S., & Sutton, P. (2017). The future value of ecosystem services: Global scenarios and national implications. Ecosystem Services.
Liaw, S. C., Smith, F. M., Hsia, Y. J., King, H. B., & Hwong, J. L. (1999). TOPMODEL simulation of Fushan watershed No. 2 discharge. 臺灣林業科學, 14(3), 323-330.
Lopez-Vicente, M., Poesen, J., Navas, A., & Gaspar, L. (2013). Predicting runoff and sediment connectivity and soil erosion by water for different land use scenarios in the Spanish Pre-Pyrenees. Catena, 102, 62-73.
Maani, K., & Cavana, R. Y. (2007). Systems thinking, system dynamics: Managing change and complexity. Prentice Hall.
Maes, J., Liquete, C., Teller, A., Erhard, M., Paracchini, M. L., Barredo, J. I., ... & Meiner, A. (2016). An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosystem services, 17, 14-23.
Mukhtar, H., Lin, Y. P., Shipin, O. V., & Petway, J. R. (2017). Modeling Nitrogen Dynamics in a Waste Stabilization Pond System Using Flexible Modeling Environment with MCMC. International journal of environmental research and public health, 14(7), 765.
Nelson, E., Mendoza, G., Regetz, J., Polasky, S., Tallis, H., Cameron, D., ... & Lonsdorf, E. (2009). Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Frontiers in Ecology and the Environment, 7(1), 4-11.
Neuwirth, C., Peck, A., & Simonović, S. P. (2015). Modeling structural change in spatial system dynamics: A Daisyworld example. Environmental Modelling & Software, 65, 30-40.
Nunes, J. P., Quintanilla, P. N., Santos, J. M., Serpa, D., Carvalho‐Santos, C., Rocha, J., ... & Keesstra, S. D. (2017). Afforestation, Subsequent Forest Fires and Provision of Hydrological Services: A Model‐Based Analysis for a Mediterranean Mountainous Catchment. Land Degradation & Development.
Pan, W. H., Chang, Y. H., Chen, J. Y., Wu, S. J., Tzeng, M. S., & Kao, M. D. (1999). Nutrition and health survey in Taiwan (NAHSIT) 1993-1996: Dietary nutrient intakes assessed by 24-hour recall. 臺灣營養學會雜誌, 24(1), 11-39.
Park, M. C., & Ahmad, C. S. (2004). Dynamic contributions of the flexor-pronator mass to elbow valgus stability. JBJS, 86(10), 2268-2274.
Peck, A., Neuwirth, C., & Simonovic, S. P. (2014). Coupling System Dynamics with Geographic Information Systems: CCaR Project Report.
Qi, C., & Chang, N. B. (2011). System dynamics modeling for municipal water demand estimation in an urban region under uncertain economic impacts. Journal of environmental management, 92(6), 1628-1641.
Rao, N. S., Easton, Z. M., Schneiderman, E. M., Zion, M. S., Lee, D. R., & Steenhuis, T. S. (2009). Modeling watershed-scale effectiveness of agricultural best management practices to reduce phosphorus loading. Journal of Environmental Management, 90(3), 1385-1395.
Renard, K. G. (1997). Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE).
Roberts, N., Anderson, D., Deal, R., Garet, M., & Shaffer, W. (1997). Introduction to Computer Simulation—A System Dynamics Modeling Approach. Journal of the Operational Research Society, 48(11), 1145-1145.
Ruckelshaus, M., McKenzie, E., Tallis, H., Guerry, A., Daily, G., Kareiva, P., ... & Bernhardt, J. (2015). Notes from the field: lessons learned from using ecosystem service approaches to inform real-world decisions. Ecological Economics, 115, 11-21.
Saeed, K. (1989). An academic user's guide to STELLA Barry Richmond, Steve Peterson, and Peter Vescuso Lyme, NH: High Performance Systems, Inc., 1987. System Dynamics Review, 5(2), 217-220.
Salter, R. M. (2013). Nova: A modern platform for system dynamics, spatial, and agent-based modeling. Procedia Computer Science, 18, 1784-1793.
Schneiderman, E. M., Pierson, D. C., Lounsbury, D. G., & Zion, M. S. (2002). Modeling the Hydrochemistry of the Cannonsville Watershed with Generalized Watershed Loading Functions (GWLF) 1. JAWRA Journal of the American Water Resources Association, 38(5), 1323-1347.
Søballe, D. M., & Threlkeld, S. T. (1985). Advection, phytoplankton biomass, and nutrient transformations in a rapidly flushed impoundment. Archiv fur Hydrobiologie. Stuttgart, 105(2), 187-203.
Sougnez, N., Van Wesemael, B., & Vanacker, V. (2011). Low erosion rates measured for steep, sparsely vegetated catchments in southeast Spain. Catena, 84(1), 1-11.
Sterman, J. D. (2000). Business dynamics: systems thinking and modeling for a complex world (No. HD30. 2 S7835 2000).
Sterman, J. D. (2001). System dynamics modeling: tools for learning in a complex world. California management review, 43(4), 8-25.
Sterman, J. D. J. D. (2000). Business dynamics: systems thinking and modeling for a complex world (No. HD30. 2 S7835 2000).
Tammi, I., Mustajärvi, K., & Rasinmäki, J. (2017). Integrating spatial valuation of ecosystem services into regional planning and development. Ecosystem Services, 26, 329-344.
Tisue, S., & Wilensky, U. (2004, October). NetLogo: Design and implementation of a multi-agent modeling environment. In Proceedings of agent (Vol. 2004, pp. 7-9).
Van Albada, G. D., Van Leer, B., & Roberts, W. (1997). A comparative study of computational methods in cosmic gas dynamics. In Upwind and High-Resolution Schemes (pp. 95-103). Springer, Berlin, Heidelberg.
Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., ... & Masui, T. (2011). The representative concentration pathways: an overview. Climatic change, 109(1-2), 5.
Vigerstol, K. L., & Aukema, J. E. (2011). A comparison of tools for modeling freshwater ecosystem services. Journal of environmental management, 92(10), 2403-2409.
Vigiak, O., Borselli, L., Newham, L. T. H., McInnes, J., & Roberts, A. M. (2012). Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio. Geomorphology, 138(1), 74-88.
Westman, W. E. (1977). How much are nature's services worth?. Science, 197(4307), 960-964.
Xu, Z., & Coors, V. (2012). Combining system dynamics model, GIS and 3D visualization in sustainability assessment of urban residential development. Building and Environment, 47, 272-287.
Yang, H., Yang, D., Lei, Z., & Sun, F. (2008). New analytical derivation of the mean annual water‐energy balance equation. Water Resources Research, 44(3).
Yeh, S. C., Wang, C. A., & Yu, H. C. (2006). Simulation of soil erosion and nutrient impact using an integrated system dynamics model in a watershed in Taiwan. Environmental Modelling & Software, 21(7), 937-948.
Yeh, S. C., Wang, C. A., & Yu, H. C. (2006). Simulation of soil erosion and nutrient impact using an integrated system dynamics model in a watershed in Taiwan. Environmental Modelling & Software, 21(7), 937-948.
Zhang, L., Hickel, K., Dawes, W. R., Chiew, F. H., Western, A. W., & Briggs, P. R. (2004). A rational function approach for estimating mean annual evapotranspiration. Water Resources Research, 40(2).
王中根, 夏军, 刘昌明, 欧春平, & 张永勇. (2007). 分布式水文模型的参数率定及敏感性分析探讨.
王偉竑. (2017). 複合水筒模式於低密度建築群降雨-逕流模擬之應用研究. 中興大學土木工程學系所學位論文, 1-66.
吳天佑. (2013). 運用 HSPF 模式探討降雨特性分佈對流量模擬之影響: 以北勢溪為例.
吳孟珊. (2014). 生態系服務的定義與特性. 林業研究專訊, 21(5), 54-57.
吳宜昭, 陳永明, & 朱容練. (2010). 台灣氣候變遷趨勢. 國研科技, (25), 40-46.
吳政達. (2017). 臺灣南部荖濃溪事業區不同林型森林碳貯存量及碳吸存量之研究. 中興大學森林學系所學位論文, 1-49.
吳政緯. (2010). 翡翠水庫營養鹽之總最大日負荷規劃, 國立台北科技大學土木與防災研究所碩士學位論文.
李明熹, 林煥軒, & 詹于婷. (2014). 利用日, 月及年降雨量估算年降雨沖蝕指數. Journal of Chinese Soil and Water Conservation, 45(2), 103-109.
李俊逸. (2013).臺灣山地集水區河川流量特徵變化:以觀測與模式取徑分析. 臺灣大學地理環境資源學研究所學位論文 , 1-116.
李胜, & 梁忠民. (2006). GLUE 方法分析新安江模型参数不确定性的应用研究. 东北水利水电, 24(2), 31-33.
林思達(2008) . 改良 GWLF 模式應用於翡翠水庫入流量模擬; Modification of the GWLF Model to Simulate the Feitsui Reservoir Inflow. 2009. PhD Thesis. 國立中央大學圖書館.
林政勳. (2015). 台灣中部地區天然闊葉林生態服務價值之評估. 臺灣大學森林環境暨資源學研究所學位論文, 1-72.
林政勳. (2015). 台灣中部地區天然闊葉林生態服務價值之評估. 臺灣大學森林環境暨資源學研究所學位論文, 1-72.
邱祈榮, & 林俊成. (2012). 森林價值知多少-自然資產與生態系統服務之簡介. 林業研究專訊, 19(6), 36-42.
邱祈榮, 陳乃維, & 莊媛卉. (2017). FSC^(TM) 森林生態系服務驗證介紹與現況. 林業研究專訊, 24(2), 83-87.
范正成, 張尊國, & 鄭克聲. (1999). 農業用地非點源污染調查及最佳管理作業功能規範之研究. 行政院環境保護署.
范正成, 楊智翔, & 劉哲欣. (2009). 台北地區降雨沖蝕指數推估公式之建立及歷年變化趨勢分析. 中華水土保持學報, 40(2), 1-9.
張嘉玲, 洪廷岳, 于子恩, & 陳怡安. HSPF 模式於水質水量模擬參數敏感度分析之研究.
許昊. (2010). 地下水補注量推估之研究-以濁水溪沖積扇為例. 臺灣大學生物環境系統工程學研究所學位論文, 1-100.
連以婷. (2010). 水文模式之參數不確定性分析. 臺灣大學生物環境系統工程學研究所學位論文, 1-75.
陳欣沛. (2017). 建立土地利用之生態系統服務衝擊評估模式. 臺灣大學環境工程學研究所學位論文, 1-123.
陳嬉旻. (2016). 集水區農業非點源污染防治效益之研究. 中興大學水土保持學系所學位論文, 1-63.
陳鴻烈, & 蔡大偉. (2008). 以主成分分析法探討水庫優養化之動力研究.
黃家勤, 溫清光, & 余嘯雷. (1999). 工業活動非點源最佳管理作業功能規範. 行政院環境保護署.
黃家勤, 溫清光, & 余嘯雷. (1999). 社區非點源最佳管理作業功能規範. 行政院環境保護署.
黃培修. (2010). 水筒模式應用於水稻梯田土壤沖蝕之研究. 中興大學土木工程學系所學位論文, 1-60.
黃翊瑋. (2017). 氣候變遷對台灣高山群系之衝擊風險評估. 臺灣大學森林環境暨資源學研究所學位論文, 1-80.
黃鈺真. (2001). HSPF 模式應用於曾文水庫集水區非點源污染負荷之推估, 碩士論文, 成功大學環境工程研究所, 臺南.
廖倫偉. (2011). 應用概似不確定性估計於溼地參數之不確定性分析. 臺灣大學生物環境系統工程學研究所學位論文, 1-84.
鄭郁蒨. (2016). 瑠公圳 (台大段) 生態系統服務之經濟價值分析. 臺灣大學環境工程學研究所學位論文, 1-154.
蕭戎雯. (2013). 不同單元尺度對土地利用及生態系統服務模擬之影響-以大屯溪流域為例. 臺灣大學生物環境系統工程學研究所學位論文, 1-126.
謝漢欽, & 成瑋. (2016). 英國生態系統服務與森林經營的進展. 林業研究專訊, 23(4), 66-71.
鍾綉雯, 吳治達, 林士淵, 林俊德, & 莊永忠. (2016). 應用遙測技術與大氣環流模式探討氣候變遷對台東集水區蒸發散之影響. 中華林學季刊, 49(2), 101-116.
蘇志強, 吳佩儒, & 盧昭堯. (2016). 台灣降雨特性變化及降雨沖蝕指數圖修訂. Journal of Chinese Soil and Water Conservation, 47(1), 1-12.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21934-
dc.description.abstract水是維持人類生命不可或缺的元素,同時也是生態系所提供的重要服務之一。但大量的人為開發,如坡地濫墾、森林砍伐、過度施肥等已超越生態系原有之承載力,導致受損的生態系無法正常發揮調節洪峰、水土保持、過濾水質等功能,對人類生活造成衝擊,造成惡性循環。
水文水理與水文服務猶如孿生兄弟,前者以定量方式描述流量、水質等時序上之變化;後者則偏向以定性方式呈現其空間分布特性。隨著生態水文學之興起,Hydro-ecology與Eco-hydrology這類詞彙開始出現於相關研究內。Zalewski與林裕彬等人將生態水文學明確定義為「一門在不同時空間尺度下,結合水文過程及生物動態變化的跨領域科學」。本研究以改良後同時具有時空間特性之空間系統動力(SSD)模擬平台,串聯起水文水理模式(GWLF)及水文服務評估工具(InVEST),作為研究生態水文之媒介。
選定南投縣陳有蘭溪作為研究區域,以實測資料進行流量驗證,本研究建立之HSSSD其RSQ與NSE都逼近0.85,相較於InVEST的RSQ=0.69/ NSE=0.65與GWLF的RSQ=0.79/ NSE=0.78,顯示HSSSD能有效提升模擬之準確性。再者,本研究以GLUE方法進行參數之不確定性分析,顯示對應土地利用為森林之CN2、r(退水係數),以及D(深層滲漏)都對模擬之結果有較大之不確定性。
結合水文水理模式與水文服務評估工具,HSSSD可同時展現時空間尺度之模擬結果,亦可提供使用者如營養鹽流失途徑等更多資訊,除進一步提升模擬之準確性,更以不確定性分析劃設模擬之95%信賴區間,使模擬結果能被零活應用於生態水文學之中。
zh_TW
dc.description.abstractWater is an indispensable element in the maintenance of human life and one of the important services provided by the ecosystem. However, a great number of artificial development, such as sloping land, deforestation, excessive fertilization, etc., have surpassed the original carrying capacity of the ecosystem, resulting in the failure of the ecosystem to function properly to regulate flood peaks, soil and water conservation, and to filter water quality. Causes an impact and creates a vicious circle to human beings.
Hydrologic and Hydraulic Modeling and Hydrology Services are like twin brothers. The former describes the changes in flow rate and water quality in a quantitative way; the latter tends to present its spatial distribution characteristics in a qualitative way. With the rise of eco-hydrology, terms such as “Hydro-ecology” and “Eco-hydrology” began to appear in related research. Zalewski, Lin Yu-Pin and others have clearly defined ecohydrology as 'A cross-disciplinary science that combines hydrological processes and biological dynamics at different spatial scales.'
In this study, the spatial system dynamics (SSD) simulation platform with improved time-space characteristics is combined with hydrological and
hydrological model (GWLF) and hydrological service assessment tool (InVEST) as the medium for studying ecological hydrology.
Chen You-lan river, Nantou County was selected as the research area, and the simulation result was validated by the measured data. The HSSSD , which was built in this study, its RSQ and NSE approaching 0.85, compared with RSQ=0.69/ NSE=0.65 of InVEST and RSQ=0.79/NSE=0.78 of GWLF., showing that HSSSD can effectively improve the accuracy of the simulation. Furthermore, this study uses the GLUE method to analyze the uncertainty of the parameters, showing that the corresponding is CN2, r of the forest and D.
Combined hydrological and hydraulic models with hydrological service assessment tools, HSSSD can simultaneously display simulation results at time and space scales, and provide users with more information such as nutrient loss pathways, in addition to further improving the accuracy of simulations and uncertainty. Analyze the 95% confidence interval of the simulation, so that the simulation results can be flexibly applied to ecological hydrology.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:53:51Z (GMT). No. of bitstreams: 1
ntu-107-R05622028-1.pdf: 10199686 bytes, checksum: 7e3d5e39894fc37ac2611418990c7cc7 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents第壹章、 緒論 1
1.1 研究目的 1
1.2 研究流程 2
第貳章、 文獻回顧 5
2.1 生態系服務 5
2.2 水文模式 10
2.3 系統動力學 13
2.4 不確定性分析 15
第參章、 研究區域與方法 17
3.1 研究區域 17
3.1.1 地理環境 17
3.1.2 圖資整理 21
3.2 生態系服務模擬與計算 24
3.2.1 Water Yield模組 25
3.2.2 Sediment Delivery Ratio model模組 28
3.2.3 Nutrient Delivery Ratio model模組 31
3.3 GWLF模式 36
3.3.1 地表 36
3.3.2 未飽和層 38
3.3.3 淺層飽和層 39
3.3.4 Curve Number法 39
3.4 系統動力模擬與計算 43
3.5 不確定性分析 48
3.6 ATP克利金空間降尺度 50
第肆章、 研究結果 53
4.1 檢驗空間系統動力模擬平台 53
4.1.1 於SSD模擬平台實踐InVEST 53
4.1.2 於SSD模擬平台實踐GWLF 66
4.1.3 綜合檢驗空間系統動力模擬平台 69
4.2 模式率定與不確定性分析 71
4.2.1 GWLF率定與不確定性分析 72
4.3 模式驗證 88
4.3.1 流量 89
4.3.2 土壤沖蝕 100
4.3.3 氮營養鹽流失量 112
4.3.4 磷營養鹽流失量 124
第伍章、 結果討論 137
5.1 檢驗空間系統動力模擬平台 137
5.2 模式率定與不確定性分析 139
5.3 模式驗證 143
第陸章、 結論與建議 145
6.1 結論 145
6.2 建議 146
附錄、參考文獻 147
dc.language.isozh-TW
dc.title應用空間系統動力於評估水文服務及其不確定性分析zh_TW
dc.titleSpatial System Dynamics approach in assessment of Hydrological Services and Uncertainty Analysisen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王?潔,范致豪,江莉琦
dc.subject.keyword空間系統動力,水文服務,不確定性分析,zh_TW
dc.subject.keywordSpatial System Dynamics,Hydrological Services,Uncertainty Analysis,en
dc.relation.page159
dc.identifier.doi10.6342/NTU201803723
dc.rights.note未授權
dc.date.accepted2018-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
9.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved