Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地理環境資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21914
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱子豪
dc.contributor.authorPei-Chen Chenen
dc.contributor.author陳佩志zh_TW
dc.date.accessioned2021-06-08T03:52:52Z-
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-17
dc.identifier.citation王一中等編輯 (2012) 海巡勤務 (第三版),臺北:行政院海岸巡防署,64-68。
陳偉明 (2007) 以支援向量機改善船舶交通管理資訊系統之可疑動態目標偵測,華梵大學資訊管理學系碩士論文。
黃喬敬(2015)基於降維方法之分層與半監督式多類別分類,臺灣大學資訊工程學研究所學位論文,2015,1-61。
潘丁瑜 (2004) 整合式即時預警系統,東吳大學資訊科學系碩士論文。
邱永芳等 (2012) 智慧型航行與監測系統之研究(3/4),台北:交通部運輸研究所研究報告,2-6 – 2-8。
邱兆偉(2014)利用圖形處理器加速 K-Means 影像分群之研究,中興大學土木工程學系碩士學位論文,2014,1-41。
周世波, & 徐維祥. (2017). 船舶軌跡異常檢測方法研究進展. 電子測量與儀器學報, (3), 329-337.
甄榮、邵哲平、潘家財等(2015) 基於統計學理論的船舶軌跡異常識別,集美大學學報:自然科學版,20(3):193-197。
Andrienko, N. V., & Andrienko, G. L. (2011). Spatial generalization and aggregation of massive movement data. IEEE Trans. Vis. Comput. Graph., 17(2), 205-219.
Helldin, T., & Riveiro, M. (2009, October). Explanation Methods for Bayesian Networks: review and application to a maritime scenario. In Proceedings of the 3rd Annual Skövde Workshop on Information Fusion Topics (SWIFT 2009) (pp. 11-16).
Breunig, M. M., Kriegel, H. P., Ng, R. T., & Sander, J. (2000, May). LOF: identifying density-based local outliers. In ACM sigmod record (Vol. 29, No. 2, pp. 93-104). ACM.
Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly Detection: A Survey, ACM Computing Surveys, Vol. 41 (3), Article 15.
Le Guillarme, N., & Lerouvreur, X. (2013, July). Unsupervised extraction of knowledge from S-AIS data for maritime situational awareness. In Information Fusion (FUSION), 2013 16th International Conference on (pp. 2025-2032). IEEE.
Hinneburg, A., & Keim, D. A. (1998, August). An efficient approach to clustering in large multimedia databases with noise. In KDD (Vol. 98, pp. 58-65).
Handayani, D. O. D., Sediono, W., & Shah, A. (2014, September). Identification of Vessel Anomaly Behavior Using Support Vector Machines and Bayesian Networks. In 2014 International Conference on Computer & Communication Engineering (ICCCE) (pp. 258-261). IEEE.
H Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier. (pp.451-459).
Hodge, V., & Austin, J. (2004). A survey of outlier detection methodologies. Artificial intelligence review, 22(2), 85-126.
Johansson, F., & Falkman, G. (2007, December). Detection of vessel anomalies-a bayesian network approach. In Intelligent Sensors, Sensor Networks and Information, 2007. ISSNIP 2007. 3rd International Conference on (pp. 395-400). IEEE.
Liebhaber, M. J., & Feher, B. (2002). Air threat assessment: Research, model, and display guidelines. SPACE AND NAVAL WARFARE SYSTEMS COMMAND SAN DIEGO CA.
Knorr, E. M., Ng, R. T., & Tucakov, V. (2000). Distance-based outliers: algorithms and applications. The VLDB Journal—The International Journal on Very Large Data Bases, 8(3-4), 237-253.
Kucuk, A., Hamdi, S. M., Aydin, B., Schuh, M. A., & Angryk, R. A. (2016, October). Pg-Trajectory: A PostgreSQL/PostGIS based data model for spatiotemporal trajectories. In 2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom)(BDCloud-SocialCom-SustainCom) (pp. 81-88). IEEE.
Laxhammar, R. (2008, June). Anomaly detection for sea surveillance. In Information Fusion, 2008 11th International Conference on (pp. 1-8). IEEE.
Laxhammar, R., Falkman, G., & Sviestins, E. (2009, July). Anomaly detection in sea traffic-a comparison of the gaussian mixture model and the kernel density estimator. In Information Fusion, 2009. FUSION'09. 12th International Conference on (pp. 756-763). IEEE.
Lee, J. G., Han, J., & Li, X. (2008, April). Trajectory outlier detection: A partition-and-detect framework. In Data Engineering, 2008. ICDE 2008. IEEE 24th International Conference on (pp. 140-149). IEEE.
Lee, W., & Xiang, D. (2001). Information-theoretic measures for anomaly detection. In Security and Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE Symposium on (pp. 130-143). IEEE.
Osekowska, E., & Carlsson, B. (2015, September). Learning maritime traffic rules using potential fields. In International Conference on Computational Logistics (pp. 298-312). Springer, Cham.
Patcha, A., & Park, J. M. (2007). An overview of anomaly detection techniques: Existing solutions and latest technological trends. Computer networks, 51(12), 3448-3470.
Le Guillarme, N., & Lerouvreur, X. (2013, July). Unsupervised extraction of knowledge from S-AIS data for maritime situational awareness. In Information Fusion (FUSION), 2013 16th International Conference on (pp. 2025-2032). IEEE.
Ristic, B., La Scala, B. F., Morelande, M. R., & Gordon, N. J. (2008, July). Statistical analysis of motion patterns in AIS Data: Anomaly detection and motion prediction. In FUSION (pp. 1-7).
Lane, R. O., Nevell, D. A., Hayward, S. D., & Beaney, T. W. (2010, July). Maritime anomaly detection and threat assessment. In Information Fusion (FUSION), 2010 13th Conference on (pp. 1-8). IEEE.
Riveiro, M., Falkman, G., Ziemke, T., & Kronhamn, T. (2009, April). Reasoning about anomalies: a study of the analytical process of detecting and identifying anomalous behavior in maritime traffic data. In Visual Analytics for Homeland Defense and Security (Vol. 7346, p. 73460A). International Society for Optics and Photonics.
Scheepens, R., Willems, N., Van de Wetering, H., Andrienko, G., Andrienko, N., & Van Wijk, J. J. (2011). Composite density maps for multivariate trajectories. IEEE Transactions on Visualization & Computer Graphics, (12), 2518-2527.
Mascaro, S., Nicholson, A., & Korb, K. (2011, July). Anomaly detection in vessel tracks using Bayesian networks. In Proceedings of the 8th Bayesian Modeling Applications Workshop.
Tan, P. N., Steinbach, M., and Kumar, V., (2006). Introduction to Data Mining. New Work: Addison Wesley, 651-658.
Meng, X. Ding, Z. Xu, J. (2014) Moving Objects Management: Models, Techniques and Applications, 2nd, Beijing: Tsinghua University Press.
Zhang, D., Li, N., Zhou, Z. H., Chen, C., Sun, L., & Li, S. (2011, September). iBAT: detecting anomalous taxi trajectories from GPS traces. In Proceedings of the 13th international conference on Ubiquitous computing (pp. 99-108). ACM.
Zhang, J., & Zulkernine, M. (2006, June). Anomaly based network intrusion detection with unsupervised outlier detection. In Communications, 2006. ICC'06. IEEE International Conference on (Vol. 5, pp. 2388-2393). IEEE.
Martineau, E., & Roy, J. (2011). Maritime anomaly detection: Domain introduction and review of selected literature (No. DRDC-VALCARTIER-TM-2010-460). DEFENCE RESEARCH AND DEVELOPMENT CANADA VALCARTIER (QUEBEC).
行政院海岸巡防署全球資訊網(自行統計) http://www.cga.gov.tw/GipOpen/wSite/ct?xItem=&ctNode=8756&mp=999 (截取時間:2018.3.1)
交通部運輸研究所港灣技術研究中心-臺灣海域船舶動態資訊系統http://163.29.73.35/module/PortsInfo/StationDetail.aspx?StationID=1(截取時間2018.04.24)
臺灣港務股份有限公司基隆港務分公司首頁https://kl.twport.com.tw/chinese/Form.aspx?n=10601B093F312608(截取時間2018.04.24)
MarineTraffich ttps://www.marinetraffic.com/en/ais/home/centerx:121.3/centery:25.2/zoom:10(截取時間2018.04.24)
機器學習簡介與監督式學習 Introduction to Machine Learning, Supervised Learning http://mropengate.blogspot.com/2015/05/ai-supervised-learning.html(截取日期:2018.7.12)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21914-
dc.description.abstract目前行政院海岸巡防署執行海上監控任務,是藉由監控人員的經驗來分析與判斷船舶之移動行為的異常與否。面對不斷產生與增加的大量船舶移動軌跡資料,使得監控人員執行海上交通監偵的任務更加繁重。另一方面,對於相對少數的異常移動行為,愈難以透過人力來偵測與判斷。然現行船舶航行態樣是否異常端靠監控人員全程監控分析研判;若人員監控目標有疏漏狀況或經驗不足等情形,易導致異常目標漏失,致使查緝勤務單位決策人員錯失防範或查緝佈署良機。
因此,本研究主要以海上船舶航行監控航跡資料(巨量空間移動GIS資料)為研究對象,運用空間資訊資料探勘(Geo-spatial Data Mining)與空間分群技術,進行空間資料分群模型建立,分析產出船隻航行航跡,進而以航跡資料特徵點提取與進行群聚、利用航跡特徵空間模式與航跡簡約化為基礎,進行正常與異常航跡的判斷。期能運用本研究發展的方法,建立異常軌跡模式偵測(Pattern Anomaly Detection)相關方法與技術。
本研究採用海洋大學基隆港附近AIS觀測資料進行研究,以Python程式語言進行AIS資料前處理,將2017年10-11月份AIS資料匯入PostgreSQL資料庫中,再從AIS船位資料表格,產出船隻航行航跡。並以QGIS為工具,配合PostGIS功能,實作提取航跡資料特徵點、進行航跡資料特徵點群聚分析、建立航跡特徵空間模式與航跡簡約化等功能,建立基隆港附近基於AIS船舶航行資料的船隻航跡模型雛型架構。
本研究以2017年12月份AIS資料進行模型驗證,經初步驗證結果證實,大部分的船隻航跡態樣均符合本研究建立船隻航跡模型,故可做為未來運用此模型,據以建立異常軌跡模式偵測方法。
zh_TW
dc.description.abstractCurrently, the Coast Guard Administration of the Executive Yuan carries out maritime surveillance tasks by analyzing and judging the abnormality of the ship's movement behavior through the experience of the monitoring personnel. In the face of the continuous generation and increase of many ship movement trajectory data, the task of monitoring personnel performing marine traffic monitoring is even more onerous. On the other hand, for relatively few abnormal movements, the more difficult it is to detect and judge through human resources. However, whether the current navigation status of the ship is abnormal depends on the monitoring and analysis of the monitoring personnel throughout the entire process. If the personnel monitoring target has omissions or inexperienced situations, it may easily lead to the loss of an abnormal target, causing the decision-makers of the service unit to miss the precautions or check the deployment opportunities.
Therefore, this study mainly focuses on marine ship navigation and monitoring data (large-scale mobile GIS data) and uses spatial data mining and spatial grouping techniques to establish a spatial data grouping model and analyze production. The ship's trajectory was tracked, and the normal and abnormal tracks were judged based on the feature extraction and clustering of track data and the use of track feature space model and track simplification. During the period, we can use the algorithms developed in this research to establish methods and techniques related to Pattern Anomaly Detection.
This study uses the AIS observation data around the Keelung Harbor of the National Taiwan Ocean University to conduct AIS data preprocessing in the Python programming language, importing AIS data from October to November 2017 into the PostgreSQL database, and outputting ships from the AIS position data. Using QGIS as a tool, with the help of Post-GIS function, it implements the function of extracting the feature points of the trajectory, analyzing the characteristic points of the track data, establishing the track feature space model and trajectory generalization, and establishing a vessel tracing model prototype architecture based on the AIS ship navigation data near the Keelung Harbor.
In this study, AIS data in December 2017 were used to verify the model. After preliminary verification, it was confirmed that most of the ship's track conditions are in line with the study to establish a ship track model. Therefore, this model can be used in the future to establish an abnormal trajectory model. Detection method.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:52:52Z (GMT). No. of bitstreams: 1
ntu-107-P01228005-1.pdf: 6936418 bytes, checksum: 3394b030f76832c74f8dd8d94e8e1171 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents謝 辭 I
摘 要 II
Abstract IV
目 錄 VI
圖目錄 VIII
表目錄 X
第一章 緒論 1
第一節 研究動機 1
第二節 研究目的 2
第二章 文獻回顧 4
第一節 船舶交通服務系統 4
第二節 異常偵測方法 5
第三節 軌跡異常偵測 7
第四節 目標移動軌跡分析 15
第三章 研究方法 21
第一節 研究架構 21
第二節 研究流程 22
第三節 研究方法 23
第四章 研究結果與討論 34
第一節 研究範圍 34
第二節 研究資料 38
第三節 研究場景 51
第四節 軌跡模式初步成果 58
第五章 結論 67
第一節 結論 67
第二節 未來研究 67
參考文獻 69
dc.language.isozh-TW
dc.title船舶航跡模式分析與異常偵測zh_TW
dc.titleMaritime Vessels Trajectory Pattern Analysis and Anomaly Detectionen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee孫志鴻,薛朝光
dc.subject.keyword船舶自動辨識系統(Automatic Identification System, AIS),船舶軌跡,船舶交通服務系統,異常模式,資料探勘,zh_TW
dc.subject.keywordAutomatic Identification System (AIS),Ship Trajectory,Abnormal Model,Data Mining,en
dc.relation.page73
dc.identifier.doi10.6342/NTU201803589
dc.rights.note未授權
dc.date.accepted2018-08-17
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地理環境資源學研究所zh_TW
顯示於系所單位:地理環境資源學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
6.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved