請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21908完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 歐陽彥正(Yen-Jen Oyang) | |
| dc.contributor.author | Yi-Chun Chen | en |
| dc.contributor.author | 陳奕均 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:52:33Z | - |
| dc.date.copyright | 2018-08-24 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-17 | |
| dc.identifier.citation | 1. Yan, W. and D.-F. Gu, [Issues on association studies on complex diseases]. Vol. 31. 2004. 533-7.
2. Zuk, O., et al., Zuk O, Hechter E, Sunyaev SR, Lander ES.. The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci USA 109: 1193-1198. Vol. 109. 2012. 1193-8. 3. Schupbach, T., et al., FastEpistasis: a high performance computing solution for quantitative trait epistasis. Bioinformatics, 2010. 26(11): p. 1468-9. 4. Wan, X., et al., BOOST: A fast approach to detecting gene-gene interactions in genome-wide case-control studies. Am J Hum Genet, 2010. 87(3): p. 325-40. 5. Bureau, A., et al., Identifying SNPs predictive of phenotype using random forests. Genet Epidemiol, 2005. 28(2): p. 171-82. 6. Yang, P., et al., Gene-gene interaction filtering with ensemble of filters. BMC Bioinformatics, 2011. 12 Suppl 1: p. S10. 7. Moore, J.H., F.W. Asselbergs, and S.M. Williams, Bioinformatics challenges for genome-wide association studies. Bioinformatics, 2010. 26(4): p. 445-455. 8. Jurtz, V.I., et al., An introduction to deep learning on biological sequence data: examples and solutions. Bioinformatics, 2017. 33(22): p. 3685-3690. 9. Stelzmann, R.A., H. Norman Schnitzlein, and F. Reed Murtagh, An English translation of Alzheimer's 1907 paper,“Über eine eigenartige Erkankung der Hirnrinde”. Clinical Anatomy: The Official Journal of the American Association of Clinical Anatomists and the British Association of Clinical Anatomists, 1995. 8(6): p. 429-431. 10. Bettens, K., K. Sleegers, and C. Van Broeckhoven, Genetic insights in Alzheimer's disease. The Lancet Neurology, 2013. 12(1): p. 92-104. 11. Levy, E., et al., Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science, 1990. 248(4959): p. 1124-6. 12. Goate, A., et al., Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature, 1991. 349(6311): p. 704-6. 13. Levy-Lahad, E., et al., Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science, 1995. 269(5226): p. 973-7. 14. Rogaev, E.I., et al., Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature, 1995. 376(6543): p. 775-8. 15. Harold, D., et al., Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nature Genetics, 2009. 41: p. 1088. 16. Manolio, T.A., Genomewide association studies and assessment of the risk of disease. New England Journal of Medicine, 2010. 363(2): p. 166-176. 17. Seshadri, S., et al., Genome-wide analysis of genetic loci associated with Alzheimer disease. Jama, 2010. 303(18): p. 1832-1840. 18. Hollingworth, P., et al., Common variants in ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nature genetics, 2011. 43(5): p. 429-435. 19. Naj, A.C., et al., Common variants in MS4A4/MS4A6E, CD2uAP, CD33, and EPHA1 are associated with late-onset Alzheimer’s disease. Nature genetics, 2011. 43(5): p. 436-441. 20. Lambert, J.-C., et al., Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genetics, 2013. 45: p. 1452. 21. Combarros, O., et al., Epistasis in sporadic Alzheimer's disease. Neurobiol Aging, 2009. 30(9): p. 1333-49. 22. Jennifer Couzin, e.a., What don't we know? Science, 2005. 309: p. 78-102. 23. Kingsmore, S.F., et al., Genome-wide association studies: progress and potential for drug discovery and development. Nat Rev Drug Discov, 2008. 7(3): p. 221-30. 24. Ozaki, K., et al., Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nat Genet, 2002. 32(4): p. 650-4. 25. Klein, R.J., et al., Complement factor H polymorphism in age-related macular degeneration. Science, 2005. 308(5720): p. 385-9. 26. Pinero, J., et al., DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res, 2017. 45(D1): p. D833-D839. 27. Breen, M.S., et al., Epistasis as the primary factor in molecular evolution. Nature, 2012. 490(7421): p. 535-8. 28. Zuk, O., et al., The mystery of missing heritability: Genetic interactions create phantom heritability. Proc Natl Acad Sci U S A, 2012. 109(4): p. 1193-8. 29. Lehner, B., Molecular mechanisms of epistasis within and between genes. Trends Genet, 2011. 27(8): p. 323-31. 30. Chang, C.C., et al., Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience, 2015. 4: p. 7. 31. Proceedings of 3rd International Conference on Document Analysis and Recognition. in Proceedings of 3rd International Conference on Document Analysis and Recognition. 1995. 32. Reif, D.M., et al. Feature Selection using a Random Forests Classifier for the Integrated Analysis of Multiple Data Types. in 2006 IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology. 2006. 33. Bureau, A., et al., Identifying SNPs predictive of phenotype using random forests. Vol. 28. 2005. 171-82. 34. Schwarz, D.F., I.R. König, and A. Ziegler, On safari to Random Jungle: a fast implementation of Random Forests for high-dimensional data. Bioinformatics, 2011. 27(3): p. 439-439. 35. Lunetta, K.L., et al., Screening large-scale association study data: exploiting interactions using random forests. BMC Genetics, 2004. 5(1): p. 32. 36. Moore, J. and S. Williams, New Strategies For Identifying Gene-Gene Interactions in Hypertension. Vol. 34. 2002. 88-95. 37. Yang, P., et al., Gene-gene interaction filtering with ensemble of filters. BMC Bioinformatics, 2011. 12(Suppl 1): p. S10-S10. 38. Wan, X., et al., MegaSNPHunter: a learning approach to detect disease predisposition SNPs and high level interactions in genome wide association study. BMC Bioinformatics, 2009. 10(1): p. 13. 39. Lou, X.Y., et al., A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence. Am J Hum Genet, 2007. 80(6): p. 1125-37. 40. Velez, D.R., et al., A balanced accuracy function for epistasis modeling in imbalanced datasets using multifactor dimensionality reduction. Genet Epidemiol, 2007. 31(4): p. 306-15. 41. Pattin, K.A., et al., A computationally efficient hypothesis testing method for epistasis analysis using multifactor dimensionality reduction. Genet Epidemiol, 2009. 33(1): p. 87-94. 42. Kira, K. and L.A. Rendell, A practical approach to feature selection, in Proceedings of the ninth international workshop on Machine learning. 1992, Morgan Kaufmann Publishers Inc.: Aberdeen, Scotland, United Kingdom. p. 249-256. 43. Wahlsten, D., Insensitivity of the Analysis of Variance to Heredity-Environment Interaction. Vol. 13. 1990. 109-120. 44. Marchini, J., P. Donnelly, and L.R. Cardon, Genome-wide strategies for detecting multiple loci that influence complex diseases. Nature Genetics, 2005. 37: p. 413. 45. Murk, W. and A.T. DeWan, Exhaustive Genome-Wide Search for SNP-SNP Interactions Across 10 Human Diseases. G3: Genes|Genomes|Genetics, 2016. 6(7): p. 2043. 46. McCulloch, W.S. and W. Pitts, A logical calculus of the ideas immanent in nervous activity. 1943. Bull Math Biol, 1990. 52(1-2): p. 99-115; discussion 73-97. 47. Rumelhart, D.E., G.E. Hinton, and R.J. Williams, Learning representations by back-propagating errors. Nature, 1986. 323: p. 533. 48. Hornik, K., M. Stinchcombe, and H. White, Multilayer feedforward networks are universal approximators. Neural networks, 1989. 2(5): p. 359-366. 49. Weisz, L., Pattern Recognition Statistical Structural And Neural Approaches. Pattern Recogn, 2016. 1(2). 50. Chang, Y.-C., Discovering Alzheimer’s Disease-related Multifactorial Pathogenesis by Machine Learning. Bioinformatics, 2017. 51. Rosenbloom, K.R., et al., The UCSC genome browser database: 2015 update. Nucleic acids research, 2014. 43(D1): p. D670-D681. 52. Kent, W.J., et al., The human genome browser at UCSC. Genome research, 2002. 12(6): p. 996-1006. 53. Lewontin, R. and K.i. Kojima, The evolutionary dynamics of complex polymorphisms. Evolution, 1960. 14(4): p. 458-472. 54. Pedregosa, F., et al., Scikit-learn: Machine learning in Python. Journal of machine learning research, 2011. 12(Oct): p. 2825-2830. 55. Bonferroni, C., Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze, 1936. 8: p. 3-62. 56. Benjamini, Y. and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the royal statistical society. Series B (Methodological), 1995: p. 289-300. 57. Szklarczyk, D., et al., STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Research, 2015. 43(Database issue): p. D447-D452. 58. Mahley, R.W., K.H. Weisgraber, and Y. Huang, Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proceedings of the National Academy of Sciences, 2006. 103(15): p. 5644-5651. 59. Bizzarro, A., et al., The complex interaction between APOE promoter and AD: an Italian case–control study. European Journal of Human Genetics, 2009. 17(7): p. 938. 60. Lyall, D.M., et al., Alzheimer's disease susceptibility genes APOE and TOMM40, and brain white matter integrity in the Lothian Birth Cohort 1936(). Neurobiology of Aging, 2014. 35(6): p. 1513.e25-1513.e33. 61. Roses, A., et al., Understanding the genetics of APOE and TOMM40 and role of mitochondrial structure and function in clinical pharmacology of Alzheimer's disease. Alzheimer's & Dementia, 2016. 12(6): p. 687-694. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21908 | - |
| dc.description.abstract | 阿茲海默症是一種會隨時間不斷惡化、症狀會從記憶力減退到失去行動能力並最終導致死亡的疾病。目前阿茲海默症的發病原因只有可能的推測,真正的原因仍不明瞭,且目前的治療方法只能延緩惡化速度,而無法治癒。儘管過去許多全基因組關聯研究已找出該疾病的數個危險因子,但也只能用來推測個體的患病風險,現有方法最大的缺點在於只考慮單一因子的效應而忽略了基因組合的效應。然而目前對於組合效應,也就是上位作用的研究方法,無論是基於統計線性方法或是傳統機器學習方法,都需要較大的記憶體容量來檢測所有可能的組合,且這種組合通常侷限在兩兩的組合。因此本研究選擇使用深度學習的多層感知器方法去從個體的基因型資料預測其表現型,並從模型中解讀上位作用。本研究的材料來自阿茲海默症腦神經影像計畫的364名個體的資料,這些個體分成病例與對照組兩種類別。在本研究中,我們依序建立了單基因模型與跨基因模型,並從兩種模型分別找出單基因與跨基因內的上位作用。找到的遺傳特徵包括一些已知的重要危險因子,例如最著名的APOE-ε4。這佐證了本研究的深度學習模型確實能找到一些真實的上位作用,除此之外,本研究方法也找到了不只兩兩的組合,解決了目前研究上位方法的限制。 | zh_TW |
| dc.description.abstract | Alzheimer's disease (AD) is a condition that worsens over time, and symptoms can gradually deteriorate from memory loss to loss of mobility and ultimately death. At present, the cause of AD is only speculated. The real cause is still unclear, and the current treatment can only delay the rate of deterioration, but the disease cannot be cured. Although previous genome-wide association studies have identified several risk factors for this disease, these factors can only be used to predict the risk of an individual. The biggest disadvantage of such approaches is that only the effects of a single factor are considered and the effects of gene combinations are ignored. The current research method for the discovery of compound effect, that is, Epistasis, whether based on statistical linear methods or machine learning methods, requires a large memory capacity to detect all possible combinations, and the combination is usually limited to two elements. In this regard, this study aims at replacing current methods for epistasis with multi-layer perceptron, which is one kind of deep learning methods, to predict individual phenotypes from its genotype data, as well as interpreting certain epistasis from our model. The material for this study was derived from 364 individuals in Alzheimer’s Disease Neuroimaging Initiative (ADNI). These individuals were diagnosed as AD or cognitively normal (CN) control. This study established single-gene model and cross-gene model in sequence, and found within-gene and cross-gene epistasis from these two models. The genetic features found included some known important risk factors, such as APOE-ε4. This proves that the deep learning model of this study can indeed find some important combinations in real data. In addition, this research method has also found combinations with more than two elements, which solves the limitation of the current methods. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:52:33Z (GMT). No. of bitstreams: 1 ntu-107-R05945027-1.pdf: 2141586 bytes, checksum: a3a378524b308291f17e5adc2744c5f9 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 前言 1 第二章 研究動機與目的 3 第三章 文獻探討 4 3.1 阿茲海默症 4 3.2 全基因組關聯分析 5 3.3 上位作用 6 3.4 偵測上位作用的方法種類 7 3.4.1 統計與線性的演算法 7 3.4.2 基於機器學習的偵測方法 8 3.5 偵測上位作用的困難與挑戰 11 3.6 多層感知器 12 第四章 研究材料 14 第五章 研究方法 15 5.1 流程簡介 15 5.2 UCSC(University of California Santa Cruz)資料庫 15 5.3 連鎖不平衡檢定 16 5.4 單基因內的上位作用 17 5.5 抽單一特徵與組合特徵 18 5.6 多重假設檢驗 20 5.7 跨基因的上位作用 21 第六章 結果與討論 23 6.1 資料前處理 23 6.2 單基因內的上位作用 24 6.3 跨基因內的上位作用 25 6.4 與其他方法比較 27 6.5 記憶體空間比較 28 第七章 結論 30 參考文獻 31 附錄1 單基因模型的前100個重要特徵 35 附錄2 跨基因模型的前100個重要特徵 38 | |
| dc.language.iso | zh-TW | |
| dc.title | 利用深度學習尋找基因交互作用及其在阿茲海默症的應用 | zh_TW |
| dc.title | Discovery of Gene Interactions by Deep Learning and its Application in Alzheimer's Disease | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳倩瑜(Chien-Yu Chen) | |
| dc.contributor.oralexamcommittee | 賴飛羆(Fei-Pei Lai),蔡承宏(Cheng-Hong Tsai) | |
| dc.subject.keyword | 阿茲海默症,上位作用,深度學習,多層感知器, | zh_TW |
| dc.subject.keyword | Alzheimer’s disease,Epistasis,Deep learning,Multilayer Perceptron, | en |
| dc.relation.page | 49 | |
| dc.identifier.doi | 10.6342/NTU201803939 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-08-17 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 2.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
