Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21886
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor李妮鍾,賴飛羆
dc.contributor.authorChing Hsuen
dc.contributor.author許靖zh_TW
dc.date.accessioned2021-06-08T03:51:28Z-
dc.date.copyright2018-08-23
dc.date.issued2018
dc.date.submitted2018-08-22
dc.identifier.citation1. Khoury, M.J., What is Genomics?
2. Fox, J.L., Obama catapults patient-empowered Precision Medicine. 2015, Nature Publishing Group.
3. Behjati, S. and P.S. Tarpey, What is next generation sequencing? Archives of Disease in Childhood-Education and Practice, 2013. 98(6): p. 236-238.
4. Voelkerding, K.V., S.A. Dames, and J.D. Durtschi, Next-generation sequencing: from basic research to diagnostics. Clinical chemistry, 2009. 55(4): p. 641-658.
5. Van den Veyver, I.B. and C.M. Eng, Genome-wide sequencing for prenatal detection of fetal single-gene disorders. Cold Spring Harbor perspectives in medicine, 2015. 5(10): p. a023077.
6. Olek, A. and K. Berlin, Method for the development of gene panels for diagnostic and therapeutic purposes based on the expression and methylation status of the genes. 2002, Google Patents.
7. Worthey, E.A., et al., Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genetics in Medicine, 2011. 13(3): p. 255.
8. Cargill, M., et al., Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature genetics, 1999. 22(3): p. 231.
9. Dewey, F.E., et al., Clinical interpretation and implications of whole-genome sequencing. Jama, 2014. 311(10): p. 1035-1045.
10. Danecek, P., et al., The variant call format and VCFtools. Bioinformatics, 2011. 27(15): p. 2156-2158.
11. Wang, K., M. Li, and H. Hakonarson, ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic acids research, 2010. 38(16): p. e164-e164.
12. Stromberg, M., et al. Nirvana: Clinical Grade Variant Annotator. in Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics. 2017. ACM.
13. Sanger, F., S. Nicklen, and A.R. Coulson, DNA sequencing with chain-terminating inhibitors. Proceedings of the national academy of sciences, 1977. 74(12): p. 5463-5467.
14. Consortium, I.H.G.S., Initial sequencing and analysis of the human genome. Nature, 2001. 409(6822): p. 860.
15. Li, H., et al., The sequence alignment/map format and SAMtools. Bioinformatics, 2009. 25(16): p. 2078-2079.
16. Quinlan, A.R. and I.M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 2010. 26(6): p. 841-842.
17. Narasimhan, V., et al., BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data. Bioinformatics, 2016. 32(11): p. 1749-1751.
18. McKenna, A., et al., The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome research, 2010. 20(9): p. 1297-1303.
19. Consortium, I.H., The international HapMap project. Nature, 2003. 426(6968): p. 789.
20. Sherry, S.T., et al., dbSNP: the NCBI database of genetic variation. Nucleic acids research, 2001. 29(1): p. 308-311.
21. Li, H. and R. Durbin, Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 2009. 25(14): p. 1754-1760.
22. Langmead, B. and S.L. Salzberg, Fast gapped-read alignment with Bowtie 2. Nature methods, 2012. 9(4): p. 357.
23. Simpson, J.T., et al., ABySS: a parallel assembler for short read sequence data. Genome research, 2009. 19(6): p. 1117-1123.
24. Xie, Y., et al., SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics, 2014. 30(12): p. 1660-1666.
25. Abyzov, A., et al., CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome research, 2011. 21(6): p. 974-984.
26. Pruitt, K.D., T. Tatusova, and D.R. Maglott, NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic acids research, 2006. 35(suppl_1): p. D61-D65.
27. Hubbard, T., et al., The Ensembl genome database project. Nucleic acids research, 2002. 30(1): p. 38-41.
28. Siva, N., 1000 Genomes project. 2008, Nature Publishing Group.
29. Landrum, M.J., et al., ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic acids research, 2013. 42(D1): p. D980-D985.
30. Forbes, S.A., et al., COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic acids research, 2014. 43(D1): p. D805-D811.
31. Ng, P.C. and S. Henikoff, SIFT: Predicting amino acid changes that affect protein function. Nucleic acids research, 2003. 31(13): p. 3812-3814.
32. Adzhubei, I.A., et al., A method and server for predicting damaging missense mutations. Nature methods, 2010. 7(4): p. 248.
33. Chang, X. and K. Wang, wANNOVAR: annotating genetic variants for personal genomes via the web. Journal of medical genetics, 2012: p. jmedgenet-2012-100918.
34. Hamosh, A., et al., Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic acids research, 2005. 33(suppl_1): p. D514-D517.
35. Stenson, P.D., et al., Human gene mutation database (HGMD®): 2003 update. Human mutation, 2003. 21(6): p. 577-581.
36. Fan, C.-T., J.-C. Lin, and C.-H. Lee, Taiwan Biobank: a project aiming to aid Taiwan’s transition into a biomedical island. 2008.
37. Richards, S., et al., Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in medicine, 2015. 17(5): p. 405.
38. Smith, J., Patterns-WPF apps with the Model-View-ViewModel design pattern. MSDN magazine, 2009: p. 72.
39. Karolchik, D., et al., The UCSC genome browser database. Nucleic acids research, 2003. 31(1): p. 51-54.
40. Rebhan, M., et al., GeneCards: integrating information about genes, proteins and diseases. Trends in Genetics, 1997. 13(4): p. 163.
41. Hardt, D., The OAuth 2.0 authorization framework. 2012.
42. Brin, S. and L. Page, The anatomy of a large-scale hypertextual web search engine. Computer networks and ISDN systems, 1998. 30(1-7): p. 107-117.
43. Facebook. Available from: https://www.facebook.com.
44. Pautasso, C., O. Zimmermann, and F. Leymann. Restful web services vs. big'web services: making the right architectural decision. in Proceedings of the 17th international conference on World Wide Web. 2008. ACM.
45. Pizzo, M., R. Handl, and M. Zurmuehl, Odata version 4.0 part 1: protocol. 2014, Technical report, OASIS.
46. Meng, L., et al., Use of exome sequencing for infants in intensive care units: ascertainment of severe single-gene disorders and effect on medical management. JAMA pediatrics, 2017. 171(12): p. e173438-e173438.
47. Yang, Y., et al., Clinical whole-exome sequencing for the diagnosis of mendelian disorders. New England Journal of Medicine, 2013. 369(16): p. 1502-1511.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21886-
dc.description.abstract基因體,是每個生物個體中所擁有的遺傳資訊。而生物個體的差異則來自於基因體中的變異。針對個體差異給予不同的處置在現代的精準醫療行為中是非常關鍵的一個點。受惠於次世代定序技術的發展,在現代的基因體研究中,次世代定序的技術已成為研究中不可或缺的一部份。當次世代定序的成本逐漸下降時,針對每個生物個體在可接受的時間與預算之前提下進行全基因組定序並非無法想像。次世代定序的應用不僅僅能應用在研究上,使用次世代定序技術將使得在醫療上針對個人化的精準醫療成為可能。全基因組定序所產生的巨量資料也使得序列資料分析成為研究者與醫生的龐大負擔。研究者和醫療人員與生物資訊分析工具流程之間的隔閡以及處理巨量資料所需的大量計算資源的運用成為精準醫療過程中的絆腳石。為了使醫師能在短時間之內,將次世代定序所產生的巨量資料轉化為可作為供醫師參考的高品質遺傳變異資訊,此研究嘗試開發出一種協助系統來幫助醫師在精準醫療行為中判讀次世代定序所產生的遺傳基因變異分析結果。然而,在只有序列變異資料的情況下,研究者難以從單純的變異結果與個體之表現型做連接。為了瞭解變異所帶來的影響,研究者通常必須查詢每種基因變異在各種不同的資料庫中之相關文獻來了解基因變異的影響。但在目標基因定序、全外顯子組定序到全基因組定序之進展下所帶來的可得知的變異數量的增加,使用人工的方式針對變異進行一對一的在資料庫中查詢變為棘手的任務。為此,本系統也將整合多個基因資料庫的全自動查詢與整合作為重要功能之一。結合了高效能的過濾與分析,此系統能輔助醫療遺傳研究人員和醫師的專業指導使用之下,在短時間之內將驚人的次世代定序之巨量資料快速地擷取出在醫師可負擔數量範圍內的高相關性變異。zh_TW
dc.description.abstractGenome contains the genetic information in each individual organism. The difference between individuals comes from the variation in the genome. The key point of precision medicine is to give different treatments based on individual variances. Benefited from the development of next generation sequencing technology, in the modern genomics research, the technology of next generation sequencing has become an indispensable part of the genetic research. As the cost of next-generation sequencing (NGS) declines, it is conceivable to perform genome-wide sequencing of each individual subject in an acceptable timeline and cost. The use of NGS can be applied not only to research but also to precision-oriented personal care. The barriers among researchers, medical staff, the pipeline of bioinformatics analysis and the load of computational resources required to process big data have become a stumbling-block in precision medicine. In order to enable physicians to translate huge amounts of data generated by NGS into high-quality genetic variation information that can be used for physicians in a short period of time, this study attempts to develop an assisting system to help physicians interpreting the results of genetic variation generated by NGS in precision medicine. For this goal, this system will also integrate an automatic query of databases with multiple genes as one of the important functions. Combined with highly efficient filtration and analysis, this system can assist physicians and researchers under the professional guidance to get affordable numbers of high correlated variants from the staggering sequencing data in a short period of time.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:51:28Z (GMT). No. of bitstreams: 1
ntu-107-R05945040-1.pdf: 1007908 bytes, checksum: 9c29ffe81179ac58045b04d8664c702e (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES viii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Specific aims 2
Chapter 2 Related work 8
2.1 Next-generation sequencing 8
2.2 NGS analysis workflow 10
2.3 Variant call format 11
2.4 Variant Annotation 13
Chapter 3 Methodology 16
3.1 Overview 16
3.2 A standalone prototype 16
3.2.1 UI design 16
3.2.2 File load 18
3.2.3 Present data 18
3.2.4 Decision tree 19
3.2.5 Query additional database 21
3.2.6 Interpretation and report generation 22
3.3 A distributable web server 22
3.3.1 Web-based approach 22
3.3.2 Implementation detail 23
Chapter 4 Results 25
Chapter 5 Discussions 32
Chapter 6 Conclusions and Future work 35
REFERENCE 36
dc.language.isoen
dc.title適用於精準醫療基因診斷的整合型遺傳變異分析系統zh_TW
dc.titleAn Integrated Genetic Variation Analysis System for Gene
Diagnostics in Precision Medicine
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡務亮,呂宗謙,莊仁輝
dc.subject.keyword次世代定序,遺傳變異分析,精準醫療,zh_TW
dc.subject.keywordNext Generation Sequencing,Genetic Variation Analysis,Precision Medicine,en
dc.relation.page40
dc.identifier.doi10.6342/NTU201804078
dc.rights.note未授權
dc.date.accepted2018-08-22
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
Appears in Collections:生醫電子與資訊學研究所

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
984.29 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved