請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21880
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳永芳 | |
dc.contributor.author | Cheng-Han Chang | en |
dc.contributor.author | 張正翰 | zh_TW |
dc.date.accessioned | 2021-06-08T03:51:10Z | - |
dc.date.copyright | 2019-07-25 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-06 | |
dc.identifier.citation | Chapter 1
1 Whiting, D. R., Guariguata, L., Weil, C. & Shaw, J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 94, 311-321 (2011). 2 Oliver, N., Toumazou, C., Cass, A. & Johnston, D. Glucose sensors: a review of current and emerging technology. Diabet. Med. 26, 197-210 (2009). 3 Yu, B., Long, N., Moussy, Y. & Moussy, F. A long-term flexible minimally-invasive implantable glucose biosensor based on an epoxy-enhanced polyurethane membrane. Biosens. Bioelectron. 21, 2275-2282 (2006). 4 Robinson, M. R. et al. Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation. Clin. Chem. 38, 1618-1622 (1992). 5 McNichols, R. J. & Cote, G. L. Optical glucose sensing in biological fluids: an overview. J Biomed. Opt. 5, 5-17 (2000). 6 Ward, K. J., Haaland, D. M., Robinson, M. R. & Eaton, R. P. Post-prandial blood glucose determination by quantitative mid-infrared spectroscopy. Appl. Spectrosc. 46, 959-965 (1992). 7 Heise, H., Marbach, R., Koschinsky, T. & Gries, F. Noninvasive blood glucose sensors based on near‐infrared spectroscopy. Artif. Organs 18, 439-447 (1994). 8 Goodarzi, M., Sharma, S., Ramon, H. & Saeys, W. Multivariate calibration of NIR spectroscopic sensors for continuous glucose monitoring. Trends Analyt. Chem. 67, 147-158 (2015). 9 Stuart, D. A. et al. In vivo glucose measurement by surface-enhanced Raman spectroscopy. Anal. Chem. 78, 7211-7215 (2006). 10 Pickup, J. C., Hussain, F., Evans, N. D., Rolinski, O. J. & Birch, D. J. Fluorescence-based glucose sensors. Biosens. Bioelectron. 20, 2555-2565 (2005). 11 Lo, Y.-L. & Yu, T.-C. A polarimetric glucose sensor using a liquid-crystal polarization modulator driven by a sinusoidal signal. Opt. Commun. 259, 40-48 (2006). 12 Kost, J., Mitragotri, S., Gabbay, R. A., Pishko, M. & Langer, R. Transdermal monitoring of glucose and other analytes using ultrasound. Nat. Med. 6, 347 (2000). 13 Potts, R. O., A Tamada, J. & J Tierney, M. Glucose monitoring by reverse iontophoresis. Diabetes Metab. Res. Rev. 18, S49–S53 (2002). 14 Ogura, M., Paliwal, S. & Mitragotri, S. Low-frequency sonophoresis: current status and future prospects. Adv. Drug Deliv. Rev. 60, 1218-1223 (2008). 15 Farmer, T. G., Edgar, T. F. & Peppas, N. A. The future of open‐and closed‐loop insulin delivery systems. J Pharm. Pharmacol. 60, 1-13 (2008). 16 Kovatchev, B. P., Breton, M., Dalla Man, C. & Cobelli, C. In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes. J Diabetes Sci. Technol. 3, 44-45 (2009). 17 O'grady, M. J. et al. The use of an automated, portable glucose control system for overnight glucose control in adolescents and young adults with type 1 diabetes. Diabetes Care 35, 2182-2187 (2012). 18 Hovorka, R. Closed-loop insulin delivery: from bench to clinical practice. Nat. Rev. Endocrinol. 7, 385 (2011). 19 Chang, C.-W. et al. Electrically and optically readable light emitting memories. Sci. Rep. 4, 5121 (2014). 20 Eswari, T., Sampath, P. & Lavanya, S. Predictive methodology for diabetic data analysis in big data. Procedia. Comput. Sci. 50, 203-208 (2015). 21 Geim, A. K. Graphene: status and prospects. Science 324, 1530-1534 (2009). 22 Chen, H., Müller, M. B., Gilmore, K. J., Wallace, G. G. & Li, D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 20, 3557-3561 (2008). 23 Meric, I. et al. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 3, 654 (2008). 24 Choi, B. G., Yang, M., Hong, W. H., Choi, J. W. & Huh, Y. S. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6, 4020-4028 (2012). 25 Wu, C.-L. et al. Graphene based multiple heterojunctions as an effective approach for high-performance gas sensing. Appl. Phys. Lett. 109, 122107 (2016). 26 Cheng, C.-C., Wu, C.-L., Liao, Y.-M. & Chen, Y.-F. Ultrafast and Ultrasensitive Gas Sensors Derived from a Large Fermi-Level Shift in the Schottky Junction with Sieve-Layer Modulation. ACS Appl. Mater. Interfaces 8, 17382-17388 (2016). 27 Ohno, Y., Maehashi, K., Yamashiro, Y. & Matsumoto, K. Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lett. 9, 3318-3322 (2009). 28 Shao, Y. et al. Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22, 1027-1036 (2010). 29 Chung, K., Lee, C.-H. & Yi, G.-C. Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices. Science 330, 655-657 (2010). 30 Tchernycheva, M. et al. InGaN/GaN core–shell single nanowire light emitting diodes with graphene-based p-contact. Nano Lett. 14, 2456-2465 (2014). 31 Chang, C. W. et al. Graphene/SiO2/p‐GaN Diodes: An Advanced Economical Alternative for Electrically Tunable Light Emitters. Adv. Funct. Mater. 23, 4043-4048 (2013). Chapter 2 1 Park, S., Boo, H. & Chung, T. D. Electrochemical non-enzymatic glucose sensors. Analytica chimica acta 556, 46-57 (2006). 2 Yang, J., Jiang, L.-C., Zhang, W.-D. & Gunasekaran, S. A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays. Talanta 82, 25-33 (2010). 3 Niu, X. et al. Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges. RSC Advances 6, 84893-84905 (2016). 4 Zhao, W. et al. A glucose-responsive controlled release of insulin system based on enzyme multilayers-coated mesoporous silica particles. Chemical Communications 47, 9459-9461 (2011). 5 Wang, X. et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Physical review letters 100, 206803 (2008). 6 Zhu, Y. et al. Carbon-based supercapacitors produced by activation of graphene. science 332, 1537-1541 (2011). 7 Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nature materials 6, 652 (2007). 8 Ang, P. K., Chen, W., Wee, A. T. S. & Loh, K. P. Solution-gated epitaxial graphene as pH sensor. Journal of the American Chemical Society 130, 14392-14393 (2008). 9 Fowler, J. D. et al. Practical chemical sensors from chemically derived graphene. ACS nano 3, 301-306 (2009). 10 Shao, Y. et al. Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22, 1027-1036 (2010). 11 Wang, Y. et al. Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS nano 5, 9927-9933 (2011). 12 Maffucci, A. & Miano, G. Electrical properties of graphene for interconnect applications. Applied Sciences 4, 305-317 (2014). 13 Arakawa, Y. Progress in GaN-based quantum dots for optoelectronics applications. IEEE journal of selected topics in quantum electronics 8, 823-832 (2002). 14 Nguyen, C., Nguyen, N. & Grider, D. Drain current compression in GaN MODFETs under large-signal modulation at microwave frequencies. Electronics Letters 35, 1380-1382 (1999). 15 El Fatimy, A. et al. Terahertz detection by GaN/AlGaN transistors. Electronics Letters 42, 1342-1344 (2006). 16 Asif Khan, M., Bhattarai, A., Kuznia, J. & Olson, D. High electron mobility transistor based on a GaN‐Al x Ga1− x N heterojunction. Applied Physics Letters 63, 1214-1215 (1993). 17 Cheung, S. & Cheung, N. Extraction of Schottky diode parameters from forward current‐voltage characteristics. Applied Physics Letters 49, 85-87 (1986). Chapter 4 1 Zhao, W. et al. A glucose-responsive controlled release of insulin system based on enzyme multilayers-coated mesoporous silica particles. ChemComm 47, 9459-9461 (2011). 2 Varghese, S. S., Lonkar, S., Singh, K., Swaminathan, S. & Abdala, A. Recent advances in graphene based gas sensors. Sens. Actuators B Chem. 218, 160-183 (2015). 3 Liu, S. et al. Strain modulation in graphene/ZnO nanorod film schottky junction for enhanced photosensing performance. Adv. Funct. Mater. 26, 1347-1353 (2016). 4 Eckmann, A. et al. Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 12, 3925-3930 (2012). 5 Nayfeh, O. M. Radio-frequency transistors using chemical-vapor-deposited monolayer graphene: performance, doping, and transport effects. IEEE Trans. Electron Devices. 58, 2847-2853 (2011). 6 Myoung, J. et al. Optical characteristics of p‐type GaN films grown by plasma‐assisted molecular beam epitaxy. Appl. Phys. Lett. 69, 2722-2724 (1996). 7 Alivov, Y. I., Van Nostrand, J., Look, D. C., Chukichev, M. & Ataev, B. Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes. Appl. Phys. Lett. 83, 2943-2945 (2003). 8 Liu, L. et al. Graphene oxidation: thickness-dependent etching and strong chemical doping. Nano Lett. 8, 1965-1970 (2008). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21880 | - |
dc.description.abstract | 光電平行讀取異質接面葡萄糖感測元件,使用高品質石墨烯製成,其靈敏度可量測範圍從1 nM 至 100 mM,未來有極大的機會發展成光電平行非侵入式葡萄糖感測元件,解決糖尿病病患偵測上的不便,也可以透過平行傳輸系統,加速訊號傳遞,可增加封閉迴圈胰島素幫浦胰島素幫浦的實際應用價值。在此篇論文中,我們製成石墨烯/氧化鋅/二氧化矽/ P型氮化鎵的穿遂型發光二極體,其特殊的工作原理,透過葡萄糖和葡萄糖氧化酵素酶,產生氧氣,參雜石墨烯表面,改變石墨烯的費米能接後,測得電流載子在不同的蕭特基未位障下的變化,間接得知葡萄糖濃度。另外,透過二氧化矽絕緣層,累積電子於二氧化矽/ P型氮化鎵介面,增加電子電洞復合機率,導致在界面層發光,因此可以透過光學量測以及電學量測,測得葡萄糖濃度,這些優異的性質,有極大的機會發展成,可攜帶式、非侵入式、以及平行光電傳輸的葡萄糖感測元件。 | zh_TW |
dc.description.abstract | Optically and electrically readable glucose sensors based on high quality graphene vertically stacked heterojunctions with ultrahigh sensitivity has been designed, fabricated and demonstrated. Its sensing mechanism makes use of the large variation in the Fermi energy of graphene upon electrons doping from oxygen molecules generated by electrochemical process of glucose oxidase at the presence of glucose molecule. A semiconductor sieve layer with suitable band alignment to prevent charge transfer from graphene can greatly enhance the sensitivity. And an insulating layer to create electron-hole pairs accumulation near the interface is very useful for light emission. Combining all these unique features together, it results in superior detection both in optical and electric performance. Through measurements of current-voltage characteristics and electroluminescence spectra, this novel structure responds to glucose concentrations covering a wide range from as low as 1 nM to 100 mM. All these superior properties show a great potential for the development of portable, noninvasive, and parallel readable glucose sensors. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:51:10Z (GMT). No. of bitstreams: 1 ntu-107-R05222062-1.pdf: 6048776 bytes, checksum: ab590e6192032f1d66c96955200ce2ac (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 中文摘要 III Abstract IV Content V List of Figures VII Chapter 1 Introduction 1 References 6 Chapter 2 Theoretical Background 11 2.1 Glucose Biosensor 11 2.2 Graphene, 2D Material 13 2.3 p-GaN Semiconductor 15 2.4 Schottky Barrier Diodes 16 References 17 Chapter 3 Experiment Details 20 3.1 Current-Voltage (I-V) Measurement 20 3.2 Electroluminescence (EL) Measurement 21 3.3 Radio-Frequency (RF) Sputtering 23 3.4 Thermal Evaporation 25 3.5 Chemical Vapor Deposition System 27 3.6 Sample Preparation 29 Chapter 4 Result and Discussion 31 4.1 Design of Glucose Sensor Based on Graphene Multiple Heterojunctions 31 4.2 Characteristic of Electrically Readable Glucose Sensing 37 4.3 Characteristic of Optically Readable Glucose Sensing 41 4.4 Mechanism Discussion 46 4.5 Noninvasive demonstration 48 Reference 50 Chapter 5 Conclusion 52 | |
dc.language.iso | en | |
dc.title | 應用石墨烯於光電平行讀取葡萄糖感測元件 | zh_TW |
dc.title | Optically and Electrically Readable Glucose Sensors Derived from Graphene Vertically Stacked Multiple Heterojunctions | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林泰源,許芳琪 | |
dc.subject.keyword | 石墨烯,高靈敏度,光電葡萄糖感測器,多層接面, | zh_TW |
dc.subject.keyword | graphene,high sensitivity,optical and electrical glucose sensing,multiple junctions, | en |
dc.relation.page | 52 | |
dc.identifier.doi | 10.6342/NTU201802199 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2018-08-06 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理學研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 5.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。