請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21878完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊健志(Chien-Chih Yang) | |
| dc.contributor.author | Yuan-Chan Liu | en |
| dc.contributor.author | 劉沅瓚 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:51:04Z | - |
| dc.date.copyright | 2019-08-20 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-17 | |
| dc.identifier.citation | Abe J, Sandhu U, Hoang N, Thangam M, Quintana-Quezada R, Fujiwara K, Le N (2017) Coordination of cellular localization-dependent effects of sumoylation in regulating cardiovascular and neurological diseases. Adv Exp Med Biol 963:337-358
Anderson DD, Eom JY, Stover PJ (2012) Competition between sumoylation and ubiquitination of serine hydroxymethyltransferase 1 determines its nuclear localization and its accumulation in the nucleus. J Biol Chem 287 (7):4790-4799. Bairoch A, Apweiler R (2000) The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 28 (1):45-48 Bar M, Schuster S, Leibman M, Ezer R, Avni A (2014) The function of EHD2 in endocytosis and defense signaling is affected by SUMO. Plant Mol Biol 84 (4-5):509-518 Bayer P, Arndt A, Metzger S, Mahajan R, Melchior F, Jaenicke R, Becker J (1998) Structure determination of the small ubiquitin-related modifier SUMO-1. J Mol Biol 280 (2):275-286 Discovery Studio Modeling Environment [Computer software]. (2017). San Diego: BIOVIA DS Boneh U, Biton I, Zheng C, Schwartz A, Ben-Ari G (2012) Characterization of potential ABA receptors in Vitis vinifera. Plant Cell Rep 31 (2):311-321 Brzezowski P, Richter AS, Grimm B (2015) Regulation and function of tetrapyrrole biosynthesis in plants and algae. Biochim Biophys Acta 1847 (9):968-985 Cahill MA (2007) Progesterone receptor membrane component 1: an integrative review. J Steroid Biochem Mol Biol 105 (1-5):16-36 Cahill MA (2017) The evolutionary appearance of signaling motifs in PGRMC1. Biosci Trends 11 (2):179-192 Cahill MA, Jazayeri JA, Catalano SM, Toyokuni S, Kovacevic Z, Richardson DR (2016) The emerging role of progesterone receptor membrane component 1 (PGRMC1) in cancer biology. Biochim Biophys Acta 1866 (2):339-349 Cahill MA MA (2017) Thoughts on interactions between PGRMC1 and diverse attested and potential hydrophobic ligands. J. Steroid Biochem. Mol. Biol 171:11-33 Castoralova M, Brezinova D, Sveda M, Lipov J, Ruml T, Knejzlik Z (2012) SUMO-2/3 conjugates accumulating under heat shock or MG132 treatment result largely from new protein synthesis. Biochim Biophys Acta 1823 (4):911-919 Castro PH, Tavares RM, Bejarano ER, Azevedo H (2012) SUMO, a heavyweight player in plant abiotic stress responses. Cell Mol Life Sci 69 (19):3269-3283 Catala R, Ouyang J, Abreu IA, Hu Y, Seo H, Zhang X, Chua NH (2007) The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell 19 (9):2952-2966 Chance B, Williams GR (1954) Kinetics of cytochrome-b5 in rat liver microsomes. J Biol Chem 209 (2):945-951 Chen R, Li L, Weng ZP (2003) ZDOCK: An initial-stage protein-docking algorithm. Proteins 52 (1):80-87 Cheong MS, Park HC, Hong MJ, Lee J, Choi W, Jin JB, Bohnert HJ, Lee SY, Bressan RA, Yun DJ (2009) Specific domain structures control abscisic acid-, salicylic acid-, and stress-mediated SIZ1 phenotypes. Plant Physiol 151 (4):1930-1942 Chiang M-H (2015) Peroxidase activity and oligomerization analysis of Arabidopsis AtMAPR2 recombinant protein. Nation Taiwan University, Taipei Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong XH, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Gene Dev 17 (8):1043-1054 Cohen-Peer R, Schuster S, Meiri D, Breiman A, Avni A (2010) Sumoylation of Arabidopsis heat shock factor A2 (HsfA2) modifies its activity during acquired thermotholerance. Plant Mol Biol 74 (1-2):33-45 Colby T, Matthai A, Boeckelmann A, Stuible HP (2006) SUMO-conjugating and SUMO-deconjugating enzymes from Arabidopsis. Plant Physiol 142 (1):318-332 Conti L, Price G, O'Donnell E, Schwessinger B, Dominy P, Sadanandom A (2008) Small ubiquitin-like modifier proteases OVERLY TOLERANT TO SALT1 and -2 regulate salt stress responses in Arabidopsis. Plant Cell 20 (10):2894-2908 Cuijpers SAG, Willemstein E, Vertegaal ACO (2017) Converging small ubiquitin-like modifier (SUMO) and ubiquitin signaling: Improved methodology identifies co-modified target proteins. Mol Cell Proteomics 16 (12):2281-2295 Dong CH, Agarwal M, Zhang YY, Xie Q, Zhu JK (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. P Natl Acad Sci USA 103 (21):8281-8286 Duverger O, Chen SX, Lee D, Li T, Chock PB, Morasso MI (2011) SUMOylation of DLX3 by SUMO1 promotes its transcriptional activity. J Cell Biochem 112 (2):445-452 Eisenberg D, Luthy R, Bowie JU (1997) VERIFY3D: Assessment of protein models with three-dimensional profiles. Method Enzymol 277:396-404. doi:Doi 10.1016/S0076-6879(97)77022-8 Erker Y, Neyret-Kahn H, Seeler JS, Dejean A, Atfi A, Levy L (2013) Arkadia, a novel SUMO-targeted ubiquitin ligase involved in PML degradation. Mol Cell Biol 33 (11):2163-2177 Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10 (4):366-371 Evdokimov E, Sharma P, Lockett SJ, Lualdi M, Kuehn MR (2008) Loss of SUMO1 in mice affects RanGAP1 localization and formation of PML nuclear bodies, but is not lethal as it can be compensated by SUMO2 or SUMO3. J Cell Sci 121 (24):4106-4113 Francis RT, Becker RR (1984) Specific indication of hemoproteins in polyacrylamide gels using a double-staining process. Anal Biochem 136 (2):509-514 Fukushima K, Omura T, Ito A (1972) Occurrence of different types of cytochrome-b5-like hemoprotein in liver-mitochondria and their intramitochondrial localization. J Biochem-Tokyo 71 (3):447-461 Fukushima K, Sato R (1973) Purification and characterization of cytochrome b5-like hemoprotein associated with outer mitochondrial membrane of rat liver. J Biochem 74 (1):161-173 Garavelli JS (2004) The RESID database of protein modifications as a resource and annotation tool. Proteomics 4 (6):1527-1533 Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8 (12):947-956. doi:10.1038/nrm2293 Griss J, Perez-Riverol Y, Lewis S, Tabb DL, Dianes JA, del-Toro N, Rurik M, Walzer M, Kohlbacher O, Hermjakob H, Wang R, Vizcaino JA (2016) Recognizing millions of consistently unidentified spectra across hundreds of shotgun proteomics datasets. Nat Methods 13 (8):651-656 Gronholm J, Vanhatupa S, Ungureanu D, Valiaho J, Laitinen T, Valjakka J, Silvennoinen O (2012) Structure-function analysis indicates that sumoylation modulates DNA-binding activity of STAT1. Bmc Biochem 13:20 Haglund K, Di Fiore PP, Dikic I (2003) Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem Sci 28 (11):598-603 Hamza I (2006) Intracellular trafficking of porphyrins. ACS Chem Biol 1 (10):627-629 Hanson EK, Ballantyne J (2010) A blue spectral shift of the hemoglobin soret band correlates with the age (time since deposition) of dried bloodstains. Plos One 5 (9). doi: 10.1371/journal.pone.001283010.1371/journal.pone.0012830 Haumont PY, Thomas MA, Labeyrie F, Lederer F (1987) Amino-acid-sequence of the cytochrome-b5-like heme-binding domain from hansenula-anomala flavocytochrome-b2. Eur J Biochem 169 (3):539-546. Hay RT (2005) SUMO: a history of modification. Mol Cell 18 (1):1-12 Hendriks IA, D'Souza RC, Chang JG, Mann M, Vertegaal ACO (2015a) System-wide identification of wild-type SUMO-2 conjugation sites. Nat Commun 6:7289 Hendriks IA, Treffers LW, Verlaan-de Vries M, Olsen JV, Vertegaal AC (2015b) SUMO2 orchestrates chromatin modifiers in response to DNA damage. Cell Rep. doi:10.1016/j.celrep.2015.02.033 Hermkes R, Fu YF, Nurrenberg K, Budhiraja R, Schmelzer E, Elrouby N, Dohmen RJ, Bachmair A, Coupland G (2011) Distinct roles for Arabidopsis SUMO protease ESD4 and its closest homolog ELS1. Planta 233 (1):63-73 Huang L, Yang S, Zhang S, Liu M, Lai J, Qi Y, Shi S, Wang J, Wang Y, Xie Q, Yang C (2009) The Arabidopsis SUMO E3 ligase AtMMS21, a homologue of NSE2/MMS21, regulates cell proliferation in the root. Plant J 60 (4):666-678 Huberts DH, van der Klei IJ (2010) Moonlighting proteins: an intriguing mode of multitasking. Biochim Biophys Acta 1803 (4):520-525 Iino M, Nomura T, Tamaki Y, Yamada Y, Yoneyama K, Takeuchi Y, Mori M, Asami T, Nakano T, Yokota T (2007) Progesterone: its occurrence in plants and involvement in plant growth. Phytochemistry 68 (12):1664-1673 Impens F, Radoshevich L, Cossart P, Ribet D (2014) Mapping of SUMO sites and analysis of SUMOylation changes induced by external stimuli. PNAS 111 (34):12432-12437 Ishida T, Yoshimura M, Miura K, Sugimoto K (2012) MMS21/HPY2 and SIZ1, Two Arabidopsis SUMO E3 ligases, have distinct functions in development. PLOS ONE 7(10): e46897. https://doi.org/10.1371/journal.pone.0046897 Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4 (9):1265-1272 Ito A (1971) Hepatic sulfite oxidase identified as cytochrome b5-like pigment extractable from mitochondria by hypotonic treatment. J Biochem 70 (6):1061-1064 J.R. Green GMD, and A. Golshani (2006) Prediction of protein sumoylation sites via parallel cascade identification. CMBEC Conference, Vancouver, Canada. doi: 10.13140/2.1.1621.3446 Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355-382 Kabe Y, Nakane T, Koike I, Yamamoto T, Sugiura Y, Harada E, Sugase K, Shimamura T, Ohmura M, Muraoka K, Yamamoto A, Uchida T, Iwata S, Yamaguchi Y, Krayukhina E, Noda M, Handa H, Ishimori K, Uchiyama S, Kobayashi T, Suematsu M (2016) Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance. Nat Commun 7:11030 Kaluka D, Batabyal D, Chiang BY, Poulos TL, Yeh SR (2015) Spectroscopic and mutagenesis studies of human PGRMC1. Biochemistry-Us 54 (8):1638-1647 Kao A-L (2010) Study on Molecular Characterization of AtMAPRs in Arabidopsis. Nation Taiwan University, Taipei Kao AL, Chang TY, Chang SH, Su JC, Yang CC (2005) Characterization of a novel Arabidopsis protein family AtMAPR homologous to 25-Dx/IZAg/Hpr6.6 proteins. Bot Bull Acad Sinica 46 (2):107-118 Kao AL, Lin YH, Chen RP, Huang YY, Chen CC, Yang CC (2012) E3-independent ubiquitination of AtMAPR/MSBP1. Phytochemistry 78:7-19 Kim DY, Scalf M, Smith LM, Vierstra RD (2013) Advanced proteomic analyses yield a deep catalog of ubiquitylation targets in Arabidopsis. Plant Cell 25 (5):1523-1540 Kim JY, Song JT, Seo HS (2017) Post-translational modifications of Arabidopsis E3 SUMO ligase AtSIZ1 are controlled by environmental conditions. FEBS Open Bio 7 (10):1622-1634 Kimura I, Nakayama Y, Konishi M, Terasawa K, Ohta M, Itoh N, Fujimoto M (2012) Functions of MAPR (membrane-associated progesterone receptor) family members as heme/steroid-binding proteins. Curr Protein Pept Sc 13 (7):687-696 Kotaja N, Karvonen U, Janne OA, Palvimo JJ (2002) The nuclear receptor interaction domain of GRIP1 is modulated by covalent attachment of SUMO-1. J Biol Chem 277 (33):30283-30288 Kragelund BB, Schenstrom SM, Rebula CA, Panse VG, Hartmann-Petersen R (2016) DSS1/Sem1, a multifunctional and intrinsically disordered protein. Trends Biochem Sci 41 (5):446-459 Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33 (7):1870-1874 Kurepa J, Walker JM, Smalle J, Gosink MM, Davis SJ, Durham TL, Sung DY, Vierstra RD (2003) The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis - Accumulation of SUMO1 and -2 conjugates is increased by stress. J Biol Chem 278 (9):6862-6872 Lamoliatte F, McManus FP, Maarifi G, Chelbi-Alix MK, Thibault P (2017) Uncovering the SUMOylation and ubiquitylation crosstalk in human cells using sequential peptide immunopurification. Nat Commun. doi: 10.1038/ncomms14109 Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17 (11):3155-3175 Li SJ, Hochstrasser M (1999) A new protease required for cell-cycle progression in yeast. Nature 398 (6724):246-251 Liebelt F, Vertegaal AC (2016) Ubiquitin-dependent and independent roles of SUMO in proteostasis. Am J Physiol Cell Physiol 311 (2):C284-296 Lin Y-H (2009) Potential autoubiquitination of AtMAPRs in Arabidopsis. National Taiwan University, Taipei Lois LM (2010) Diversity of the SUMOylation machinery in plants. Biochem Soc Trans 38 (Pt 1):60-64 Lois LM, Lima CD (2005) Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. EMBO J 24 (3):439-451 Losel R, Breiter S, Seyfert M, Wehling M, Falkenstein E (2005) Classic and non-classic progesterone receptors are both expressed in human spermatozoa. Horm Metab Res 37 (1):10-14 Lu H, Greenberg JT, Holuigue L (2016) Editorial: Salicylic Acid Signaling Networks. Front Plant Sci 7:238 Lumpkin RJ, Gu HB, Zhu YY, Leonard M, Ahmad AS, Clauser KR, Meyer JG, Bennett EJ, Komives EA (2017) Site-specific identification and quantitation of endogenous SUMO modifications under native conditions. Nat Commun 8. doi: 10.1038/s41467-017-01271-3 Mallory JC, Crudden G, Johnson BL, Mo CQ, Pierson CA, Bard M, Craven RJ (2005) Dap1p, a heme-binding protein that regulates the cytochrome P450 protein Erg11p/Cyp51p in Saccharomyces cerevisiae. Mol. Cell. Biol 25 (5):1669-1679 Marchler-Bauer A, Bo Y, Han LY, He JE, Lanczycki CJ, Lu SN, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lu F, Marchler GH, Song JS, Thanki N, Wang ZX, Yamashita RA, Zhang DC, Zheng CJ, Geer LY, Bryant SH (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45 (D1):D200-D203 Matic I, Schimmel J, Hendriks IA, van Santen MA, van de Rijke F, van Dam H, Gnad F, Mann M, Vertegaal AC (2010) Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif. Mol Cell 39 (4):641-652 Michalak M, Corbett EF, Mesaeli N, Nakamura K, Opas M (1999) Calreticulin: one protein, one gene, many functions. Biochem J 344 Pt 2:281-292 Mifsud W, Bateman A (2002) Membrane-bound progesterone receptors contain a cytochrome b5-like ligand-binding domain. Genome Biol 3(12):research0068.1–0068.5 Miller KE, Kim Y, Huh WK, Park HO (2015) Bimolecular fluorescence complementation (BiFC) analysis: advances and recent applications for genome-wide interaction studies. J. Mol. Biol 427 (11):2039-2055 Miller MJ, Barrett-Wilt GA, Hua Z, Vierstra RD (2010) Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis. Proc Natl Acad Sci U S A 107 (38):16512-16517 Min L, Takemori H, Nonaka Y, Katoh Y, Doi J, Horike N, Osamu H, Raza FS, Vinson GP, Okamoto M (2004) Characterization of the adrenal-specific antigen IZA (inner zone antigen) and its role in the steroidogenesis. Mol Cell Endocrinol 215 (1-2):143-148 Miura K, Hasegawa PM (2010) Sumoylation and other ubiquitin-like post-translational modifications in plants. Trends Cell Biol 20 (4):223-232 Miura K, Jin JB, Hasegawa PM (2007a) Sumoylation, a post-translational regulatory process in plants. Curr Opin Plant Biol 10 (5):495-502 Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM (2007b) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19 (4):1403-1414 Miura K, Lee J, Jin JB, Yoo CY, Miura T, Hasegawa PM (2009) Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. PNAS 106 (13):5418-5423 Miura K, Lee J, Miura T, Hasegawa PM (2010) SIZ1 controls cell growth and plant development in Arabidopsis through salicylic acid. Plant Cell Physiol 51 (1):103-113 Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA, Yun DJ, Hasegawa PM (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. PNAS (21):7760-7765 Moodley K, Murrell H (2004) A colour-map plugin for the open source, java based, image processing package, ImageJ. Comput Geosci-Uk 30 (6):609-618 Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schaffer AA (2008) Database indexing for production MegaBLAST searches. Bioinformatics 24 (16):1757-1764 Mudgett MB (2005) New insights to the function of phytopathogenic bacterial type III effectors in plants. Annu Rev Plant Biol 56:509-531 Mukhopadhyay D, Dasso M (2007) Modification in reverse: the SUMO proteases. Trends Biochem Sci 32 (6):286-295 Naik MT, Naik, N., Shih, H., Huang, T. (2016) Structures of human SUMO. http://www.rcsb.org/structure/2N1V, to be published. doi: 10.2210/pdb2N1V/pdb Okada S, Nagabuchi M, Takamura Y, Nakagawa T, Shinmyozu K, Nakayama J, Tanaka K (2009) Reconstitution of Arabidopsis thaliana SUMO pathways in E. coli: functional evaluation of SUMO machinery proteins and mapping of SUMOylation sites by mass spectrometry. Plant Cell Physiol 50 (6):1049-1061 Park BS, Song JT, Seo HS (2011a) Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1. Nat Commun. doi: 10.1038/ncomms1408 Park HJ, Kim WY, Park HC, Lee SY, Bohnert HJ, Yun DJ (2011b) SUMO and SUMOylation in plants. Mol Cells 32 (4):305-316 Park HJ, Yun DJ (2013) New insights into the role of the small ubiquitin-like modifier (SUMO) in plants. Int Rev Cell Mol Biol 300:161-209 Peluso JJ, Lodde V, Liu X (2012) Progesterone regulation of progesterone receptor membrane component 1 (PGRMC1) sumoylation and transcriptional activity in spontaneously immortalized granulosa cells. Endocrinology 153 (8):3929-3939 Peluso JJ, Romak J, Liu X (2008) Progesterone receptor membrane component-1 (PGRMC1) is the mediator of progesterone's antiapoptotic action in spontaneously immortalized granulosa cells as revealed by PGRMC1 small interfering ribonucleic acid treatment and functional analysis of PGRMC1 mutations. Endocrinology 149 (2):534-543 Peng J, Wysocka J (2008) It takes a PHD to SUMO. Trends Biochem Sci 33 (5):191-194 Piel RB, Shiferaw MT, Vashisht AA, Marcero JR, Praissman JL, Phillips JD, Wohlschlegel JA, Medlock AE (2016) A novel role for progesterone receptor membrane component 1 (PGRMC1): a partner and regulator of ferrochelatase. Biochemistry-Us 55 (37):5204-5217 Pierce BG, Wiehe K, Hwang H, Kim BH, Vreven T, Weng ZP (2014) ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 30 (12):1771-1773 Ren J, Gao XJ, Jin CJ, Zhu M, Wang XW, Shaw A, Wen LP, Yao XB, Xue Y (2009) Systematic study of protein sumoylation: Development of a site-specific predictor of SUMOsp 2.0. Proteomics 9 (12):3409-3412 Rytz TC, Miller MJ, McLoughlin F, Augustine RC, Marshall RS, Juan YT, Charng YY, Scalf M, Smith LM, Vierstra RD (2018) SUMOylome Profiling Reveals a Diverse Array of Nuclear Targets Modified by the SUMO Ligase SIZ1 During Heat Stress Saracco SA, Miller MJ, Kurepa J, Vierstra RD (2007) Genetic analysis of SUMOylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins is essential. Plant Physiol 145 (1):119-134 Schimmel J, Larsen KM, Matic I, van Hagen M, Cox J, Mann M, Andersen JS, Vertegaal ACO (2008) The ubiquitin-proteasome system is a key component of the sumo-2/3 cycle. Mol Cell Proteomics 7 (11):2107-2122 Shen MY, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15 (11):2507-2524 Shi QM, Yang X, Song L, Xue HW (2011) Arabidopsis MSBP1 is activated by HY5 and HYH and is involved in photomorphogenesis and brassinosteroid sensitivity regulation. Mol Plant 4 (6):1092-1104 Smith VL, Jackson L, Schorey JS (2015) Ubiquitination as a mechanism to transport soluble mycobacterial and eukaryotic proteins to exosomes. J Immunol 195 (6):2722-2730 Song J, Vinarov D, Tyler E, Shahan M, Tyler R, Markley J (2004) Hypothetical protein At2g24940.1 from Arabidopsis thaliana has a cytochrome b5 like fold. J Biomol NMR 30 (2):215-218 Song L, Shi QM, Yang XH, Xu ZH, Xue HW (2009) Membrane steroid-binding protein 1 (MSBP1) negatively regulates brassinosteroid signaling by enhancing the endocytosis of BAK1. Cell Res 19 (7):864-876 Sung MK, Lim G, Yi DG, Chang YJ, Yang EB, Lee K, Huh WK (2013) Genome-wide bimolecular fluorescence complementation analysis of SUMO interactome in yeast. Genome Res 23 (4):736-746 Tammsalu T, Matic I, Jaffray EG, Ibrahim AFM, Tatham MH, Hay RT (2014) Proteome-wide identification of SUMO2 modification sites. Sci Signal.; 7(323):rs2. doi:10.1126/scisignal.2005146 Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58 (1):321-346 Tang ZS, Hecker CM, Scheschonka A, Betz H (2008) Protein interactions in the sumoylation cascade - lessons from X-ray structures. Febs Journal 275 (12):3003-3015 Terzaghi L, Luciano AM, Lodde V (2015) Progesterone receptor membrane component 1 (PGRMC1) in cell division: its role in bovine granulosa cells mitosis. Int. J. heal anim sci food safe. doi:10.13130/2283-3927/5114 Thompson AM, Reddi AR, Shi X, Goldbeck RA, Moenne-Loccoz P, Gibney BR, Holman TR (2007) Measurement of the heme affinity for yeast dap1p, and its importance in cellular function. Biochemistry-Us 46 (50):14629-14637 Uchimura Y, Nakamura M, Sugasawa K, Nakao M, Saitoh H (2004) Overproduction of eukaryotic SUMO-1- and SUMO-2-conjugated proteins in Escherichia coli. Anal Biochem 331 (1):204-206 Ulrich HD (2009) Regulating post-translational modifications of the eukaryotic replication clamp PCNA. DNA Repair 8 (4):461-469 van den Burg HA, Takken FL (2010) SUMO-, MAPK-, and resistance protein-signaling converge at transcription complexes that regulate plant innate immunity. Plant Signal Behav 5 (12):1597-1601 van Lis R, Atteia A, Nogaj LA, Beale SI (2005) Subcellular localization and light-regulated expression of protoporphyrinogen IX oxidase and ferrochelatase in Chlamydomonas reinhardtii. Plant Physiol 139 (4):1946-1958 Vyas VK, Ukawala RD, Ghate M, Chintha C (2012) Homology modeling a fast tool for drug discovery: current perspectives. Indian J Pharm Sci 74 (1):1-17 Wang LL, Wansleeben C, Zhao SL, Miao P, Paschen W, Yang W (2014) SUMO2 is essential while SUMO3 is dispensable for mouse embryonic development. Embo Rep 15 (8):878-885 Wilson VG (2017) SUMO regulation of cellular processes. Adv. Exp. Med. Biol 963. doi: 10.1007/978-3-319-50044-7_5 Wu HY, Liu KH, Wang YC, Wu JF, Chiu WL, Chen CY, Wu SH, Sheen J, Lai EM (2014) AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods 10:19 Wu K, Yan H, Fang L, Wang XJ, Pfleger C, Jiang XJ, Huang L, Pan ZQ (2011) Mono-ubiquitination drives nuclear export of the human DCN1-like protein hDCNL1. J Biol Chem 286 (39):34060-34070 Xu XM, Rose A, Muthuswamy S, Jeong SY, Venkatakrishnan S, Zhao Q, Meier I (2007) NUCLEAR PORE ANCHOR, the Arabidopsis homolog of Tpr/Mlp1/Mlp2/megator, is involved in mRNA export and SUMO homeostasis and affects diverse aspects of plant development. Plant Cell 19 (5):1537-1548 Yang X, Song L, Xue HW (2008) Membrane steroid binding protein 1 (MSBP1) stimulates tropism by regulating vesicle trafficking and auxin redistribution. Mol Plant 1 (6):1077-1087 Yang XH, Xu ZH, Xue HW (2005) Arabidopsis membrane steroid binding protein 1 is involved in inhibition of cell elongation. Plant Cell 17 (1):116-131 Yi CL, Deng XW (2005) COP1 - from plant photomorphogenesis to mammalian tumorigenesis. Trends in Cell Biology 15 (11):618-625 Yu L-g (2014) Roles of AtMAPR2 in brassinosteroid-mediated development of Arabidopsis. National Taiwan University, Taipei Zhao Q, Xie YB, Zheng YY, Jiang S, Liu WZ, Mu WP, Liu ZX, Zhao Y, Xue Y, Ren J (2014) GPS-SUMO: a tool for the prediction of sumoylation sites and SUMO-interaction motifs. Nucleic Acids Res 42 (W1):W325-W330 Zheng Y, Schumaker KS, Guo Y (2012) Sumoylation of transcription factor MYB30 by the small ubiquitin-like modifier E3 ligase SIZ1 mediates abscisic acid response in Arabidopsis thaliana. PNAS 109 (31):12822-12827 Zhu ZX, Ye HB, Xuan YH, Yao DN (2014) Overexpression of a SNARE protein AtBS14b alters BR response in Arabidopsis. Bot Stud 55 (1):55 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21878 | - |
| dc.description.abstract | AtMAPRs的同源蛋白廣泛存在於動植物中,參與固醇類的生合成等生理功能及具與固醇類、血基質等結合的能力。然而他們在植物中的功能仍尚未被清楚了解。AtMAPRs能在缺少E3泛素連接酶的情況下進行泛素化。另外,AtMAPRs在哺乳動物中的同源蛋白PGRMC1能在體內進行類泛素化(sumoylation)。泛素和類泛素在大小、構形、反應機制等多方面都高度相似。AtMAPRs是否也會被類泛素化就成了一個有趣的問題。而了解AtMAPRs的轉譯後修飾則能對於其他的生理功能有進一步的認識。本研究利用在E. coli中重建AtMAPRs與類泛素化系統,分析其被類泛素化能力。在此系統中,重組AtMAPRs與類泛素化系統被共表現於大腸桿菌內並部分產生類泛素化。分析含重組AtMAPRs及類泛素化系統的E. coli粗抽物,並以抗體偵測,發現AtMAPR2產生了由14 kDa上移到30 kDa的條帶。AtMAPR5也有類似的現象。這顯示AtMAPR2和AtMAPR5都可能會被類泛素化。而後進一步以液相層析串聯式質譜儀來分析這個結果。AtMAPR2的九個離胺酸中有四個都顯示被類泛素化修飾。離胺酸217則是AtMAPR5中唯一出現類泛素化修飾的離胺酸。將AtMAPR2的四個被辨認為類泛素化潛在的離胺酸(K18、K35、K61和K76)突變為精胺酸之後,依然能夠看到條帶上移的現象,訊號強度為正常AtMAPR2的21%。而將AtMAPR5的離胺酸217突變為精胺酸之後,AtMAPR5就不再出現上移條帶。使用MG132處理的阿拉伯芥中可以偵測到AtMAPR2和它的一個上移條帶,其身份仍待鑑定。本研究發現AtMAPR2可被類泛素化,並有多個類泛素化位點。AtMAPR5也可被類泛素化,但僅有離胺酸217一個位點。轉譯後修飾時常與蛋白質的生理功能相關,這些結果將提供日後AtMAPR2和AtMAPR5的研究方向。 | zh_TW |
| dc.description.abstract | Arabidopsis thaliana membrane-associated progesterone binding proteins (AtMAPRs) and its homologs are extensively found in metazoans and plants. Members have been reported to function in steroid biosynthesis and binding to heme and steroid. However, their functions in plants are poorly understood. AtMAPRs can be E3-independently ubiquitinated in in vitro ubiquitination assays, while the mammalian homolog of AtMAPRs, PGRMC1, is found to be sumoylated in vivo. Ubiquitin and SUMO are similar in terms of size, structure, mechanism and more. It is interesting to study that if AtMAPRs can be sumoylated as well. This study utilized a reconstituted sumoylation system in E. coli to analyze the sumoylation activity of AtMAPRs. In the system, recombinant AtMAPRs were co-expressed with the sumoylation machinery and were partially sumoylated. An upper-shifted AtMAPR2 (30 kDa) was detected in oppose to its original 14 kDa band. A similar band-shift was also observed for AtMAPR5. These indicate that AtMAPR2 and AtMAPR5 can potentially be sumoylated. The identification of sumoylated AtMAPR2 and sumoylated AtMAPR5 were further studied using LC-MS/MS. Four of the nine lysines of AtMAPR2 were identified to be sumoylation target sites. K217 was the only identified sumoylation site in AtMAPR5. The band shift for AtMAPR2K18R/K35R/K61R/K76R was still present, only to be 79% lighter than that of the wild type, and AtMAPR5K217R did not have a shifted band. Upper-shifting bands of AtMAPR2 was observed in MG132 treated Arabidopsis, its identity is still to be analyzed. This study showed that AtMAPR2 can be sumoylated and had multiple sumoylation sites. AtMAPR5 can be sumoylated and had only one site, K217. Since post-translational modifications are often related to the functions of a protein, these results provide directions for further functional studies of AtMAPR2 and AtMAPR5. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:51:04Z (GMT). No. of bitstreams: 1 ntu-107-R05b22049-1.pdf: 6380965 bytes, checksum: 1a00cbeaf9c485cdd0082849472f290e (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | Abstract I
摘要 II Abbreviations III 1. Introduction 1 1.1 Arabidopsis thaliana membrane-associated progesterone receptors (AtMAPRs) 1 1.1.1 A few physiological features of AtMAPR5 have been elucidated 2 1.1.2 There are a number of hints on the function of AtMAPR2 3 1.1.3 AtMAPRs can be ubiquitinated in vitro 4 1.2 PGRMC1 is a well-studied mammalian homolog of the AtMAPRs 4 1.2.1 PGRMC1 can be sumoylated in vivo 5 1.3 A brief introduction to sumoylation 5 1.3.1 Sumoylation is catalyzed by three enzymes 6 1.3.2 Consensus sequences can help identify putative sumoylation sites 7 1.3.3 The sumoylation machinery in Arabidopsis thaliana 8 1.3.4 Sumoylation has a variety of physiological effects in Arabidopsis thaliana 10 1.3.5 SUMO and ubiquitin can modify the same protein 12 1.4 Motivation 13 1.5 Aim of this study 14 2. Materials and methods 14 2.1 Experimental materials 14 2.1.1 Vectors 14 2.1.2 Bacterial strains 15 2.2 Experimental methods 16 2.2.1 DNA extraction and analyze 16 2.2.1.1 Plant genomic DNA extraction 16 2.2.1.2 E. coli plasmid DNA extraction 16 2.2.1.3 Agarose gel electrophoresis 17 2.2.1.4 DNA quantification 17 2.2.2 Arabidopsis thaliana gene cloning 17 2.2.2.1 Polymerase chain reaction 18 2.2.2.2 DNA purification 18 2.2.2.3 T-A cloning 18 2.2.2.4 Chemically competent cell preparation 19 2.2.2.5 Heat shock transformation 19 2.2.2.6 Electro competent cell preparation 19 2.2.2.7 Electroporation 20 2.2.2.8 Colony PCR 20 2.2.2.9 Restriction Enzyme Digestion 20 2.2.2.10 DNA ligation 20 2.2.2.11 Site directed mutagenesis 21 2.2.3 Reconstituted sumoylation system in E. coli 21 2.2.4 Protein analysis 21 2.2.4.1 SDS-PAGE 21 2.2.4.2 Coomassie Brilliant Blue R-250 staining 22 2.2.4.3 Western blot 22 2.2.5 Liquid Chromatograph Tandem Mass Spectrometer 23 2.2.6 Arabidopsis thaliana germination 24 2.2.7 AGROBEST transient expression in Arabidopsis thaliana 24 2.2.8 MG132 treatment for Arabidopsis thaliana 25 2.2.9 Creation of a phylogenic tree 25 2.2.10 Discovery Studio 26 2.2.10.1 Homology modeling and model verification 26 2.2.10.2 Protein docking (ZDOCK) 26 3. Results 28 3.1 AtMAPRs have putative sumoylation sites 28 3.2 Reconstituted sumoylation system in E. coli and the sumoylation of AtMAPRs 29 3.3 LC-MS/MS analysis 31 3.3.1 Protein identification 32 3.3.2 Recognition of sumoylation sites 33 3.4 Site-directed mutagenesis of the sumoylation sites found by LC-MS/MS 34 3.5 The evolutionary origins of AtMAPR2, AtMAPR5, and their sumoylation sites 35 3.6 Modeling of a heme-bound AtMAPR2 and its sumoylation sites 38 3.7 Research on Sumoylation of AtMAPR2 in vivo 41 4. Discussion 43 4.1 AtMAPR2 has multiple sumoylation sites 43 4.2 AtMAPR2 and its sumoylation is potentially a heme reservoir in Arabidopsis 45 4.3 Sumoylated AtMAPR5 could potentially act similarly to sumoylated PGRMC1 48 4.4 SUMO and ubiquitin can both modify AtMAPR2 and AtMAPR5 49 4.5 AtMAPR2 and AtMAPR5 is potentially sumoylated in vivo 50 References 52 Figures 62 Tables 78 Appendix 82 Appendix 1 82 Appendix 2 83 Appendix 3 89 Appendix 4 102 論文口試問答摘要 110 | |
| dc.language.iso | en | |
| dc.title | 利用大腸桿菌系統進行AtMAPRs的類泛素化修飾之研究 | zh_TW |
| dc.title | Study of sumoylation of AtMAPRs using a reconstituted sumoylation system in E. coli | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張世宗,李昆達,陳佩燁 | |
| dc.subject.keyword | AtMAPR2,AtMAPR5,MSBP1,類泛素, | zh_TW |
| dc.subject.keyword | AtMAPR2,AtMAPR5,MSBP1,SUMO, | en |
| dc.relation.page | 116 | |
| dc.identifier.doi | 10.6342/NTU201803970 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-08-18 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科技學系 | zh_TW |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 6.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
