Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21874
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃慶怡(Ching-I Huang)
dc.contributor.authorYu-Pen Chenen
dc.contributor.author陳昱朋zh_TW
dc.date.accessioned2021-06-08T03:50:53Z-
dc.date.copyright2018-10-02
dc.date.issued2018
dc.date.submitted2018-09-25
dc.identifier.citation[1] Cheng Y-J, Yang S-H, Hsu C-S. Synthesis of conjugated polymers for organic solar cell applications. Chemical reviews. 2009;109:5868-923.
[2] Nguyen TL, Choi H, Ko S-J, Uddin MA, Walker B, Yum S, et al. Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a∼ 300 nm thick conventional single-cell device. Energy & Environmental Science. 2014;7:3040-51.
[3] Vohra V, Kawashima K, Kakara T, Koganezawa T, Osaka I, Takimiya K, et al. Efficient inverted polymer solar cells employing favourable molecular orientation. Nature Photonics. 2015;9:403.
[4] Jin Y, Chen Z, Xiao M, Peng J, Fan B, Ying L, et al. Thick Film Polymer Solar Cells Based on Naphtho [1, 2‐c: 5, 6‐c] bis [1, 2, 5] thiadiazole Conjugated Polymers with Efficiency over 11%. Adv Energy Mater. 2017;7:1700944.
[5] Liu YH, Zhao JB, Li ZK, Mu C, Ma W, Hu HW, et al. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat Commun. 2014;5:8.
[6] Ong KH, Lim SL, Tan HS, Wong HK, Li J, Ma Z, et al. A Versatile Low Bandgap Polymer for Air‐Stable, High‐Mobility Field‐Effect Transistors and Efficient Polymer Solar Cells. Advanced Materials. 2011;23:1409-13.
[7] Jheng JF, Lai YY, Wu JS, Chao YH, Wang CL, Hsu CS. Influences of the Non‐Covalent Interaction Strength on Reaching High Solid‐State Order and Device Performance of a Low Bandgap Polymer with Axisymmetrical Structural Units. Advanced Materials. 2013;25:2445-51.
[8] Hu HW, Jiang K, Yang GF, Liu J, Li ZK, Lin HR, et al. Terthiophene-Based D-A Polymer with an Asymmetric Arrangement of Alkyl Chains That Enables Efficient Polymer Solar Cells. J Am Chem Soc. 2015;137:14149-57.
[9] Zhao J, Song D, Qiao B, Xu Z, Huang D, Wang M, et al. Regulating the polymer crystallize behavior via the synergistic additives towards high-performance bulk heterojunction solar cells. Organic Electronics. 2018;58:178-84.
[10] Wadsworth A, Ashraf RS, Abdelsamie M, Pont S, Little M, Moser M, et al. Highly Efficient and Reproducible Nonfullerene Solar Cells from Hydrocarbon Solvents. ACS Energy Letters. 2017;2:1494-500.
[11] Sun Q, Zhang F, An Q, Zhang M, Ma X, Zhang J. Simultaneously Enhanced Efficiency and Stability of Polymer Solar Cells by Employing Solvent Additive and Upside-down Drying Method. ACS applied materials & interfaces. 2017;9:8863-71.
[12] Zhao J, Zhao S, Xu Z, Qiao B, Huang D, Zhao L, et al. Revealing the effect of additives with different solubility on the morphology and the donor crystalline structures of organic solar cells. ACS applied materials & interfaces. 2016;8:18231-7.
[13] Ma W, Yang G, Jiang K, Carpenter JH, Wu Y, Meng X, et al. Influence of Processing Parameters and Molecular Weight on the Morphology and Properties of High‐Performance PffBT4T‐2OD: PC71BM Organic Solar Cells. Adv Energy Mater. 2015;5.
[14] Pirotte G, Agarkar S, Xu B, Zhang J, Lutsen L, Vanderzande D, et al. Molecular weight tuning of low bandgap polymers by continuous flow chemistry: increasing the applicability of PffBT4T for organic photovoltaics. Journal of Materials Chemistry A. 2017;5:18166-75.
[15] Zhang Y, Parnell AJ, Pontecchiani F, Cooper JF, Thompson RL, Jones RA, et al. Understanding and controlling morphology evolution via DIO plasticization in PffBT4T-2OD/PC 71 BM devices. Scientific Reports. 2017;7:44269.
[16] Reichenberger M, Kroh D, Matrone GM, Schötz K, Pröller S, Filonik O, et al. Controlling aggregate formation in conjugated polymers by spin‐coating below the critical temperature of the disorder–order transition. Journal of Polymer Science Part B: Polymer Physics. 2018;56:532-42.
[17] Xu C, Wright M, Elumalai NK, Mahmud MA, Wang D, Gonçales VR, et al. Realizing 11.3% efficiency in PffBT4T-2OD fullerene organic solar cells via superior charge extraction at interfaces. Applied Physics A. 2018;124:449.
[18] Xu C, Wright M, Elumalai NK, Mahmud MA, Wang D, Upama MB, et al. Highly crystalline bilayer electron transport layer for efficient conjugated polymer solar cells. Current Applied Physics. 2018;18:505-11.
[19] Sharma R, Lee H, Borse K, Gupta V, Joshi AG, Yoo S, et al. Ga-doped ZnO as an electron transport layer for PffBT4T-2OD: PC70BM organic solar cells. Organic Electronics. 2017;43:207-13.
[20] Juang T-Y, Hsu Y-C, Jiang B-H, Chen C-P. Highly efficient inverted organic photovoltaics containing aliphatic hyperbranched polymers as cathode modified layers. Macromolecules. 2016;49:7837-43.
[21] Xiao M, Zhang K, Jin Y, Yin Q, Zhong W, Huang F, et al. Low temperature processed high-performance thick film ternary polymer solar cell with enhanced stability. Nano Energy. 2018;48:53-62.
[22] Li W, Yan Y, Gong Y, Cai J, Cai F, Gurney RS, et al. Contrasting Effects of Energy Transfer in Determining Efficiency Improvements in Ternary Polymer Solar Cells. Advanced Functional Materials. 2018;28:1704212.
[23] Zhao F, Li Y, Wang Z, Yang Y, Wang Z, He G, et al. Combining energy transfer and optimized morphology for highly efficient ternary polymer solar cells. Adv Energy Mater. 2017;7.
[24] Li W, Cai J, Cai F, Yan Y, Yi H, Gurney RS, et al. Achieving over 11% power conversion efficiency in PffBT4T-2OD-based ternary polymer solar cells with enhanced open-circuit-voltage and suppressed charge recombination. Nano Energy. 2018;44:155-63.
[25] Cha H, Wheeler S, Holliday S, Dimitrov SD, Wadsworth A, Lee HH, et al. Influence of Blend Morphology and Energetics on Charge Separation and Recombination Dynamics in Organic Solar Cells Incorporating a Nonfullerene Acceptor. Advanced Functional Materials. 2018;28:1704389.
[26] Cha H, Wu J, Wadsworth A, Nagitta J, Limbu S, Pont S, et al. An Efficient,“Burn in” Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor. Advanced Materials. 2017;29.
[27] Yang L, Chen Y, Chen S, Dong T, Deng W, Lv L, et al. Achieving high performance non-fullerene organic solar cells through tuning the numbers of electron deficient building blocks of molecular acceptors. Journal of Power Sources. 2016;324:538-46.
[28] Bagui A, Gupta V, Maurya K, Singh SP. High-Performance Non-Fullerene Acceptor Derived from Diathiafulvalene Wings for Solution-Processed Organic Photovoltaics. The Journal of Physical Chemistry C. 2016;120:24615-22.
[29] Zhou H, Yang L, Xiao S, Liu S, You W. Donor− acceptor polymers incorporating alkylated dithienylbenzothiadiazole for bulk heterojunction solar cells: pronounced effect of positioning alkyl chains. Macromolecules. 2009;43:811-20.
[30] Alexiadis O, Mavrantzas VG. All-atom molecular dynamics simulation of temperature effects on the structural, thermodynamic, and packing properties of the pure amorphous and pure crystalline phases of regioregular P3HT. Macromolecules. 2013;46:2450-67.
[31] Brinkmann M, Rannou P. Molecular weight dependence of chain packing and semicrystalline structure in oriented films of regioregular poly (3-hexylthiophene) revealed by high-resolution transmission electron microscopy. Macromolecules. 2009;42:1125-30.
[32] McCulloch B, Ho V, Hoarfrost M, Stanley C, Do C, Heller WT, et al. Polymer chain shape of poly (3-alkylthiophenes) in solution using small-angle neutron scattering. Macromolecules. 2013;46:1899-907.
[33] Bi X, Ying Q, Qian R. Intrinsic viscosity versus molar mass relationship of poly (3‐hexylthiophene) in toluene. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics. 1992;193:2905-14.
[34] Heffner GW, Pearson DS. Molecular characterization of poly (3-hexylthiophene). Macromolecules. 1991;24:6295-9.
[35] Gettinger C, Heeger A, Drake J, Pine D. A photoluminescence study of poly (phenylene vinylene) derivatives: The effect of intrinsic persistence length. The Journal of chemical physics. 1994;101:1673-8.
[36] Zhang W, Gomez ED, Milner ST. Predicting chain dimensions of semiflexible polymers from dihedral potentials. Macromolecules. 2014;47:6453-61.
[37] Kuei B, Gomez ED. Chain conformations and phase behavior of conjugated polymers. Soft Matter. 2017;13:49-67.
[38] Zhang W, Gomez ED, Milner ST. Predicting nematic phases of semiflexible polymers. Macromolecules. 2015;48:1454-62.
[39] Zhou H, Yang L, You W. Rational design of high performance conjugated polymers for organic solar cells. Macromolecules. 2012;45:607-32.
[40] To T, Adams S. Modelling of P3HT: PCBM interface using coarse-grained forcefield derived from accurate atomistic forcefield. Physical Chemistry Chemical Physics. 2014;16:4653-63.
[41] Wang T, Chen XK, Ashokan A, Zheng Z, Ravva MK, Brédas JL. Bulk Heterojunction Solar Cells: Impact of Minor Structural Modifications to the Polymer Backbone on the Polymer–Fullerene Mixing and Packing and on the Fullerene–Fullerene Connecting Network. Advanced Functional Materials. 2018;28:1705868.
[42] Mayo SL, Olafson BD, Goddard WA. DREIDING: a generic force field for molecular simulations. Journal of Physical chemistry. 1990;94:8897-909.
[43] Rappe AK, Goddard III WA. Charge equilibration for molecular dynamics simulations. The Journal of Physical Chemistry. 1991;95:3358-63.
[44] Reith D, Pütz M, Müller‐Plathe F. Deriving effective mesoscale potentials from atomistic simulations. Journal of computational chemistry. 2003;24:1624-36.
[45] Lan YK, Huang CI. A Theoretical Study of the Charge Transfer Behavior of the Highly Regioregular Poly-3-hexylthiophene in the Ordered State. J Phys Chem B. 2008;112:14857-62.
[46] Chen CW, Huang CI. Effects of intra/inter-molecular potential parameters, length and grafting density of side-chains on the self-assembling behavior of poly(3 '-alkylthiophene)s in the ordered state. Polymer. 2015;77:189-98.
[47] Brinkmann M, Wittmann JC. Orientation of regioregular poly (3‐hexylthiophene) by directional solidification: a simple method to reveal the semicrystalline structure of a conjugated polymer. Advanced Materials. 2006;18:860-3.
[48] Cheung DL, Troisi A. Theoretical study of the organic photovoltaic electron acceptor PCBM: Morphology, electronic structure, and charge localization. The Journal of Physical Chemistry C. 2010;114:20479-88.
[49] Mortuza S, Cisneros C, Bartolo M, Banerjee S. Molecular modeling of nanoparticles and conjugated polymers during synthesis of photoactive layers of organic photovoltaic solar cells. Proceedings of AIChE Annual Meeting2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21874-
dc.description.abstract本研究以厚膜型高效率太陽能電池PffBT4T:PC61BM為系統,並採用全原子模型,建構其於粗粒化模型下之分子內/分子間勢能函數,分析在無序/有序狀態下之分子鏈特性及構形,從中探討此高效率材料之影響因素。首先在分子間作用力部分中,我們發現環與環之作用力中以BT環與硫環(A-E)之間的吸引力為最強,表示此材料相較於P3HT而言,於主鏈上加入BT環更能幫助此材料於分子間的作用力提升,有助於π-π作用力提升;於各分子和PC61BM之作用力中,發現PC61BM與硫環之吸引力是大於與BT環之吸引力,表示PC61BM會頃向與主鏈上之硫環互相吸引,原因來自於BT環末端之氟取代基導致其極性差異所影響,因此加入BT環並沒有提升高分子與PC61BM之間的作用力,因此於混摻下與PC61BM之間能有適當之作用力,且因分子間作用力提升,推斷於混摻下高分子仍有良好的結晶性質,有助於電洞傳遞率提升。
接著我們初步分析此無序系統下之PffBT4T分子鏈,觀察到其持續長度約為125Å,表示此D-A型共聚合高分子之因內部電荷轉移 (internal charge transfer, ICT)作用,更加穩定重複單元間的雙鍵,使其能夠擁有較長的共軛長度,有助於提升電洞傳遞率。接著我們探討PffBT4T於有序堆疊狀態下之分子鏈特性與構形,發現此材料於π-π方向之作用力是相當強的,並且觀察到此材料於聚合度為8之分子鏈長度156Å並沒有明顯之分子鏈轉折,相較於P3HT系統於分子鏈長度大於80Å即有明顯之分子鏈轉折,因此於域的尺寸大時仍有良好的結晶性質,使電洞傳遞率能大幅提高;在分子鏈構形中,統計其扭轉角度發現主鏈上之BT環與硫環間因立體障礙及作用力差異,導致其偏離共平面並有兩個峰值存在,而在硫環之間的扭轉角度中則呈現相當共平面,側鏈部分則發現其與主鏈硫環平面之間是有存在約33°之扭轉,藉此降低與主鏈之間的立體障礙,整體而言此材料仍然保持相當好的緊密堆疊,由此得知分支點設置於第二個碳上是能有效減緩與主鏈上之立體障礙。整體而言,相較於P3HT材料之單一環類分子結構,其主鏈上加入BT環形成D-A型共聚合物,使其擁有較長的共軛長度,並且提升分子間吸引力,導致其於有序狀態有很強的π-π吸引力,因此有高結晶性質及電洞傳遞率,並且與PC61BM混摻下能有適當的作用力,使其於混摻下亦能維持高結晶特性,因此能應用於厚膜型元件,使能量轉換效率大幅提高。
zh_TW
dc.description.abstractIn this study, the thick-film high-efficiency solar cell PffBT4T:PC61BM was used as the system, and the all-atomic model was used to construct the intramolecular/intermolecular potential energy function under the coarse-grained model, and the molecules in the disordered/ordered state were analyzed. Chain characteristics and configuration, from which to explore the influencing factors of this high efficiency material. First, in the intermolecular force part, we found that the interaction between the ring and the ring is the strongest between the BT ring and the sulfur ring , indicating that the material is added to the main chain compared to P3HT. The BT ring can help the material to increase the force between the molecules and contribute to the π-π force. In the force of each molecule and PC61BM, it is found that the attraction of PC61BM and sulfur ring is greater than that of the BT ring. Force, indicating that PC61BM will attract the sulfur ring on the main chain, because the fluorine substituent at the end of the BT ring causes the difference in polarity, so the addition of the BT ring does not enhance the force between the polymer and PC61BM. Therefore, under the mixing and PC61BM can have a suitable force, and due to the increase of the intermolecular force, it is concluded that the polymer still has good crystal properties, which contributes to the increase of the hole transmission rate.
Then we initially analyzed the PffBT4T molecular chain under this disordered system and observed that its sustained length is about 125 Å, indicating that the D-A type copolymerized polymer is more stable due to internal charge transfer (ICT). More stable double-bonds between repeating units allows it to have a longer conjugate length, which helps to increase the hole transfer rate. Next, we investigate the molecular chain characteristics and configuration of PffBT4T in the ordered-state. It is found that the force of this material in the π-π direction is quite strong, and the molecular length of the material is observed to be 156Å. There is no obvious molecular chain twisting. Compared with the P3HT system, the molecular chain length is more than 80 Å, there is a significant molecular chain twisting. Therefore, when the size of the domain is large, there is still good crystallization property, so that the hole transmission rate can be greatly improved; In the molecular chain configuration, the torsional angle is found to find the steric hindrance and the force difference between the BT ring and the sulfur ring in the main chain, which leads to the twist the coplanar plane and two peaks exist. But the torsional angle between the sulfur rings are quite coplanar. The side chain part is found to have a twist of about 33° with the main chain sulfur ring plane, thereby reducing the steric hindrance between the main chain and the material remains good stacking. So that the branch point set on the second carbon can effectively slow down the steric hindrance on the main chain.
On the whole, compared with the single aromatic ring molecular structure of P3HT material, the BT ring is added to the main chain to form a D-A type copolymer, which has a longer conjugate length and enhances the intermolecular attraction, resulting in the ordered state has a strong π-π attraction, so it has high crystallinity and hole transfer rate, and it can have a suitable force when mixed with PC61BM, so that it can maintain high crystallization characteristics under mixing. Therefore, it can be applied to a thick-film PSCs device, and the energy conversion efficiency is greatly improved.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:50:53Z (GMT). No. of bitstreams: 1
ntu-107-R04549030-1.pdf: 3505797 bytes, checksum: 3e4eac2adbf19f9a77169996068c0c19 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
摘要 ii
ABSTRACT iii
目錄 v
圖目錄 vi
表目錄 viii
第1章 前言 1
第2章 模擬方法 12
2.1 粗粒化模型及位置點設置 12
2.2 分子動力學模擬 13
2.2.1 粗粒化模型下之分子間勢能函數建構 13
2.2.2 無序狀態與有序堆疊系統建構 14
2.2.3 粗粒化模型是能函數建構 15
第3章 結果與討論 17
3.1 粗粒化模型下之分子間勢能函數探討 17
3.2 分子鏈構形與分子內勢能函數探討 24
3.2.1 PffBT4T於無序狀態下之持續長度測量 24
3.2.2 PffBT4T於有序狀態下之分子鏈構形探討 25
第4章 結論 38
REFERENCE 40
附錄 44
dc.language.isozh-TW
dc.title運用分子動力學建構高效率太陽能電池系統於堆疊結構下之粗粒化模型勢能函數並探討其與分子鏈構形之關聯性zh_TW
dc.titleExploring the Correlation between Molecular Conformation and Potential parameter in Highly Efficient Polymer Solar Cells in the Order State via Molecular Dynamics Methodsen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee賴育英(Yu-Ying Lai),李正光(Cheng-Kuang Lee)
dc.subject.keyword厚膜型高效率太陽能電池,分子動力學,無序/有序狀態,粗粒化勢能函數,分子鏈構形,zh_TW
dc.subject.keywordthick-film PSCs,molecular dynamics,disorder/order state,coarse-grained force ?eld,conformation,en
dc.relation.page48
dc.identifier.doi10.6342/NTU201804144
dc.rights.note未授權
dc.date.accepted2018-09-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
3.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved