Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21864
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王暉
dc.contributor.authorWei-Cheng Huangen
dc.contributor.author黃煒程zh_TW
dc.date.accessioned2021-06-08T03:50:23Z-
dc.date.copyright2018-10-18
dc.date.issued2018
dc.date.submitted2018-10-15
dc.identifier.citation[1] SKA Website [Online] https://www.skatelescope.org/
[2] P. E. Dewdney, P. J. Hall, R. T. Schilizzi, et al., “The square kilometre array,” in Proc. of the IEEE, vol. 97, no. 8, pp. 1482-1496, Aug, 2009.
[3] R. V. L. Hartley, 'Transmission of Information,' in Bell System Technical Journal, July, 1928.
[4] C. E. Shannon, 'Communication in the presence of noise,' in Proceedings of the Institute of Radio Engineers, January 1949.
[5] Industrial, scientific and medical (ISM) applications (of radio frequency energy) / ISM application, Article 1.15, Section IV, ITU Radio Regulations. [Online] https://www.itu.int/en/Pages/default.aspx
[6] The state of broadband 2018: broadband catalyzing sustainable development, ITU annual report. [Online] https://www.itu.int/dms_pub/itu-s/opb/pol/ S-POL- BROADBAND.1 9-2018-PDF -E.pdf
[7] C. F. Chou, et al., 'High gain fully on-chip LNAs with wideband input matching in 0.15-μm GaAs pHEMT for radio astronomical telescope,' 2015 European Microwave Conference (EuMC), Paris, 2015.
[8] J.-S. Yao, X.-P. Sun, and B. Lin, “1.5–2.7 GHz ultra low noise bypass LNA,” in IEEE MTT-S Int. Microw. Symp. Dig., June, 2014.
[9] P.-L. Hai, et al., “A fully-on-chip wideband low noise amplifier for radio telescope applications,” in IEEE ISCAS Symp. Dig., May, 2009.
[10] H.-L Kao, et al., “Design of an S-band 0.35 μm AlGaN/GaN LNA using cascode topology,” in IEEE DDECS Symp. Dig., April, 2013.
[11] Y.-Y. Peng, et al., “A low power S-band receiver using GaAs pHEMT technology,” in IEEE 13th ISIC Symp. Dig., Dec., 2011.
[12] S.-E. Shih, et al., “Design and analysis of ultra wideband GaN dual-gate HEMT low-noise amplifiers,” IEEE Trans. on Microw. Theory and Tech., Dec, 2009.
[13] C.-C. Kuo, et al., “A K-band compact fully integrated transformer power amplifier in 0.18-μm CMOS,” in APMC. Dig., pp. 597-599, Nov. 2013.
[14] K. Kim, and C. Nguyen, “A 16.5-28 GHz 0.18-μm BiCMOS power amplifier with flat 19.4 +/- 1.2 dBm output power,” IEEE Microwave and Wireless Components Letters, vol.24, no. 2, pp. 108-110, Feb. 2014.
[15] J.-F.Yeh, et al., “MMW ultra-compact N-way transformer PAs using bowtie-radical architecture in 65-nm CMOS,” IEEE Microwave and Wireless Components Letters, vol.25, no. 7, pp. 460-462, July 2015.
[16] B. Park, et al., “Highly linear CMOS power amplifier for mm-Wave applications,” in IEEE MTT-S Int. Microwave Symp. Dig., May 2016.
[17] S. Shakib, et al., 'A highly efficient and linear power amplifier for 28-GHz 5G phased array radios in 28-nm CMOS,' in IEEE Journal of Solid-State Circuits, vol. 51, no. 12, pp. 3020-3036, Dec. 2016.
[18] Y. Zhang and P. Reynaert, 'A high-efficiency linear power amplifier for 28GHz mobile communications in 40nm CMOS,' 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Honolulu, HI, 2017, pp. 33-36.
[19] S. Shakib, et al., 'A wideband 28GHz power amplifier supporting 8×100MHz carrier aggregation for 5G in 40nm CMOS,' 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2017, pp. 44-45.
[20] V. Sokol, K. Hoffmann, J. Vajtr, “Noise figure measurement of highly mismatched DUT,” in Radioengineering. vol. 12, 2003.
[21] C. A. Balanis, “Linear wire antennas,” in Antenna Theory: Analysis and Design, 3rd ed., USA: Wiley-Interscience, pp. 182-184.
[22] W. R. Eisenstadt, et al., “Mixed-mode S-parameters and conversion techniques,” in Microwave Differential Circuit Design Using Mixed Mode S-Parameters, USA: Artech House, 2006.
[23] Y. C. Chen, et al., 'An ultra-broadband low noise amplifier in GaAs 0.1-μm pHEMT process for radio astronomy application,' in 2017 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Seoul, 2017, pp. 80-82.
[24] R. Hu, “An 8-20-GHz wide-band LNA design and the analysis of its input matching mechanism,” in IEEE Microwave Component Letter (MWCL), vol. 14, no. 11, pp528-530, Nov. 2004.
[25] D. Kuylenstierna, S. E. Gunnarsson and H. Zirath, 'Lumped-element quadrature power splitters using mixed right/left-handed transmission lines,' in IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 8, pp. 2616-2621, Aug. 2005.
[26] E. Wilkinson, “An N-Way Hybrid Power Divider,” IRE Trans. Microwave Theory & Tech., vol. 8, no. 1, pp. 116-118, January 1960.
[27] David M. Pozar, Microwave Engineering.
[28] D. A. Frickey, 'Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances,' in IEEE Transactions on Microwave Theory and Techniques, vol. 42, no. 2, pp. 205-211, Feb. 1994.
[29] J. L. Lin, et al., 'A K-band transformer based power amplifier with 24.4-dBm output power and 28% PAE in 90-nm CMOS technology,' in 2017 IEEE MTT-S International Microwave Symposium (IMS), Honolulu, HI, 2017.
[30] C.-F. Chou, et al., “A 60-GHz 20.6-dBm symmetric radical-combining wideband power amplifier with 20.3% peak PAE and 20-dB gain in 90- nm CMOS,” in IEEE MTT-S Int. Microwave Symp. Dig., May 2016.
[31] C.-C. Kuo, et al., “A K-band compact fully integrated transformer power amplifier in 0.18-μm CMOS,” in APMC. Dig., pp. 597-599, Nov. 2013.
[32] K. Kim, and C. Nguyen, “A 16.5-28 GHz 0.18-μm BiCMOS power amplifier with flat 19.4 +/- 1.2 dBm output power,” in IEEE Microwave and Wireless Components Letters, vol.24, no. 2, pp. 108-110, Feb. 2014.
[33] H. Wong, S. L. Siu, K. Kakusima and H. Iwai, 'Modeling and characterization of radio-frequency characteristics of multi-finger nanometer MOS transistors,' in 2009 IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), Xi'an, 2009, pp. 3-7.
[34] A. Nakamura, N. Yoshikawa, T. Miyazako, T. Oishi, H. Ammo and K. Takeshita, 'Layout optimization of RF CMOS in the 90nm generation by a physics-based model including the multi-finger wiring effect,' in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006, San Francisco, CA, 2006.
[35] S. Yoshitomi, A. Bazigos and M. Bucher, 'EKV3 Parameter Extraction and Characterization of 90nm RF-CMOS Technology,' in 2007 14th International Conference on Mixed Design of Integrated Circuits and Systems, Ciechocinek, 2007, pp. 74-79.
[36] TSMC 90-nm CMOS datasheet, Taiwan Semiconductor Manufacturing Co, Ltd, Hsinchu, Taiwan.
[37] S. C. Cripps, RF Power Amplifiers for Wireless Communications. Boston, MA:Artech House, 2000.
[38] Noël Deferm, Patrick Reynaert, CMOS Front Ends for Millimeter Wave Wireless Communication Systems. 10.1007/978-3-319-13951-7.
[39] M. Jamal Deen, Tor A. Fjeldly, CMOS RF Modeling, Characterization and Applications.
[40] Shen, Y., Mohammadi, Saeed, “nMOSFET RF and noise model on standard 45nm SOI technology,” Purdue University, 2017. [Online] https://nanohub.org/ publications/160/1
[41] Hao Zheng, Zhanlei Yang, Wenju Liu, Jizhong Liang and Yanpeng Li, 'Improving deep neural networks using softplus units,' 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, 2015.
[42] Hahnloser, R., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., Seung, H. S., 'Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit,' in Nature., pp.947-951, June, 2000.
[43] H. Ide and T. Kurita, 'Improvement of learning for CNN with ReLU activation by sparse regularization,' 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, 2017, pp. 2684-2691.
[44] C. C. Cheng, “Neutralization and unilateralization,” IRE Trans. Circuit Theory, vol. 2, no. 2, pp.138-145, June 1955.
[45] W. L. Chan and J. R. Long, 'A 58–65 GHz neutralized CMOS power amplifier with PAE above 10% at 1-V supply,' in IEEE Journal of Solid-State Circuits, vol. 45, no. 3, pp. 554-564, March 2010.
[46] Behzad Razavi, RF Microelectronics.
[47] P. Reynaert and A. M. Niknejad, “Power combining techniques for RF and mm-wave CMOS power amplifiers,” in Proc. IEEE Eur. Solid-State Circuits Conference (ESSCIRC), 2007.
[48] C. Y. Law and A. V. Pham, “A-high-gain 60 GHz power amplifier with 20 dBm output power in 90 nm CMOS” in Proc. IEEE Eur. Solid-State Circuits Conference Dig. Tech. (ISSCC), Feb. 2011.
[49] Ercan Kaymaksut, Dixian Zhan, Patrick Reynaert, “Transformer-Based Doherty Power Amplifier for mm-wave applications in 40-nm CMOS,” in IEEE Transactions on Microwave Theory and Techniques, April. 2015.
[50] J. Chen and A.M. Niknejad, “A compact 1V 18.6 dBm 60 GHz power amplifier in 65 nm CMOS,” in IEEE Eur. Solid-State Circuits Conference Dig. Tech. (ISSCC), Feb. 2011.
[51] J.-F. Yeh, Y.-F. Hsiao, et al., “MMW ultra-compact n-way transformer PAs using bowtie-radial architecture in 65-nm CMOS,” in IEEE Trans. Microwave Component Letter (MWCL), vol. 25, no. 7, pp. 460-462, Dec. 2015.
[52] W. K. Chen, Fundamentals of Circuits and Filters, 3rd ed. USA: CRC Press, 2009.
[53] I. Aoki, S. D. Kee, D. B. Rutledge and A. Hajimiri, “Distributed active transformer-a new power-combining and impedance-transformation technique,” in IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 1, pp316-331, Jan. 2002.
[54] Ahmed Saadoon Ezzulddin, Mohammed Hussain Ali, et al., “On-Chip RF Transformer Performance Improvement Technique,” in Eng. & Tech. Journal, vol. 28, no. 4, 2010.
[55] R. W. Jackson, 'Rollett Proviso in the Stability of Linear Microwave Circuits—A Tutorial,' in IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 3, pp. 993-1000, March 2006.
[56] Rollet Factor versus Pole-Zero Identification. [Online] https://www.slideshare.net/ StephaneDellier/k-factor-1-does-not-ensure-unconditional-stability
[57] K. Wang, M. Jones and S. Nelson, 'The S-probe-a new, cost-effective, 4-gamma method for evaluating multi-stage amplifier stability,' IEEE MTT-S Microwave Symposium Digest, Albuquerque, NM, USA, 1992, pp. 829-832 vol.2.
[58] Farid Golnaraghi, Benjamin C. Kuo, Automatic Control Systems.
[59] Simon Haykin, Michael Moher, Communication systems.
[60] IEEE Standard for Information technology--Telecommunications and information exchange between systems Local and metropolitan area networks--Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,' in IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012), 14 Dec. 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21864-
dc.description.abstract本論文將探討一個應用於天文接收機之差動轉單端低雜訊放大器晶片的設計及量測方法和量測成果與一個應用於第五代行動通訊之使用新式中和化技術之K-頻高效率CMOS功率放大器晶片的設計和量測結果。
首先是應用於大型陣列式天文電波接收機所設計之差動輸入-單端輸出架構砷化鎵低雜訊放大器,設計的操作頻段為1.5 GHz-3.7 GHz。為了進行高度可靠之系統整合及更低之系統雜訊(Noise Figure),此晶片採全整合設計,不需要任何晶片外電路及匹配即可運作。此晶片將非平衡-平衡轉換器整合於晶片上之第一級低雜訊放大核心後端以降低系統雜訊。另外本文將介紹針對差動輸入-單端輸出元件之Noise Figure量測及校正方法。此電路量測之增益為31.8 dB、Noise Figure為0.73 dB、電源消耗功率為25 mW,模擬結果與量測結果合理符合。
接著是應用於第五代行動通訊收發機、ISM頻段通訊收發機所設計之高效率、高輸出功率90-nm CMOS射頻功率放大器。操作的輸出功率頻段為22-30 GHz。此電路採用創新式中和化技術以解決電路穩定性問題,由於電路穩定性問題被解決,因此針對輸出功率和效率最佳化之電晶體尺寸配置可以使用在晶片上以達到高輸出功率及高效率。另外,此晶片使用非對稱式匹配變壓器來降低相位偏移問題,以達到更高之輸出功率及效率。此晶片於28GHz之量測增益為16.3 dB、飽和輸出功率為26 dBm、功率附加效率(PAE)為34%、晶片面積為0.401平方毫米。
zh_TW
dc.description.abstractThis thesis presents the design and measurement results of a differential input to single-ended output low noise amplifier (DLNA) and a K-band CMOS-based power amplifier with inductance-based neutralization.
In the first part, a fully-integrated differential low noise amplifier designed for the SKA-mid band-3 receiver used in SKA radio astronomical telescope is presented. The DLNA is designed and fabricated in GaAs high electron mobility transistor. The targeted operating frequency is from 1.5 to 3.2 GHz. The fully on-chip lumped LC balun is designed to achieve lower power consumption and noise figure. The measurement results demonstrate 1-dB bandwidth from 1.5 to 3.7 GHz, 31.8-dB gain and average in-band noise figure of 0.73 dB with dc power consumption of 25 mW.
In the second part, a fully-integrated K-band transformer combined power amplifier (PA) with novel neutralization technique is presented and implemented in 90-nm CMOS process for 5G communication and 24-GHz ISM-band applications. The asymmetrical transformers are designed to compensate phase imbalance. The inductance-based neutralization structure is utilized to cope with the overall stability issue. Thus, the optimal transistor sizes can be chosen to achieve high output power and power added efficiency (PAE). The measurement results demonstrate 16.3-dB small-signal gain, saturated power (Psat) of 26.0 dBm, output 1-dB compression point (OP1dB) of 23.2 dBm, and peak PAE of 34% at 28 GHz with the chip size of 0.401 mm2.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:50:23Z (GMT). No. of bitstreams: 1
ntu-107-R05942016-1.pdf: 13826757 bytes, checksum: 691d690a3ce0aabbfe28e0dbb2cc44fa (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xx
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Literature Survey 2
1.2.1 LNAs around L-band and S-band 2
1.2.2 CMOS-based PAs around K-band and Ka-band 5
1.3 Contributions 7
1.3.1 GaAs pHEMT-Based Differential LNA Designed for the SKA-mid Band-3 (1.65 to 3.05 GHz) Application 7
1.3.2 K-band CMOS-Based Power Amplifier with Inductance-Based Neutralization 8
1.4 Thesis Organization 10
Chapter 2 Design of a Fully-Integrated Differential LNA in 0.15-μm GaAs pHEMT for Radio Astronomical Receiver 11
2.1 Introduction 11
2.2 Circuit Design of the Differential LNA 16
2.2.1 Circuit Architecture 16
2.2.2 The Overall Design of the Amplifier Stages 18
2.2.3 Transistor Size Selection 25
2.2.4 Inductive Source Degeneration 32
2.2.5 Design of the Lumped LC Balun 33
2.2.6 Full Circuit Post-Layout Simulation and Stability Check 47
2.3 Experimental Results 55
2.3.1 DC Operating Point 55
2.3.2 Three-Port S-Parameters Measurement 56
2.3.3 Noise Figure Measurement 60
2.3.4 Large-Signal Power Sweep Measurement 64
2.4 Summary 66
Chapter 3 Design of a K-band CMOS-Based Power Amplifier with Novel Inductance-Based Neutralization 68
3.1 Circuit Design of the K-band Power Amplifier 69
3.1.1 Circuit Architecture 70
3.1.2 Parameter-Based Transistor Size Selection 73
3.1.3 Stability Consideration & Neutralization Techniques 90
3.1.4 Design of the Matching Networks 111
3.1.5 Full Circuit Post-Layout Simulation and Stability Check 121
3.2 Experimental Results 135
3.2.1 DC Operating Point 135
3.2.2 S-Parameters and Large-Signal Power Sweep Measurement 136
3.2.3 Digital Modulation 140
3.3 Summary 147
Chapter 4 Conclusions 149
References 150
dc.language.isoen
dc.title應用於天文接收機之差動低雜訊放大器與應用於5G通訊之K-頻高效率CMOS功率放大器設計zh_TW
dc.titleDesign of Differential LNA for Radio Astronomy Receiver and High-Efficiency K-band CMOS-Based Power Amplifier with Inductance-Based Neutralization for 5G Communication.en
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee黃天偉,章朝盛,蔡作敏,張宏埜
dc.subject.keyword低雜訊放大器,高速電子遷移率電晶體,寬頻,天文接收機,差動放大 器,量測,射頻功率放大器,中和化技術,互補式金屬氧化物半導體,zh_TW
dc.subject.keywordSKA,Low Noise Amplifier,pHEMT,Differential,Power Amplifier,5G,ISM,K-band,CMOS,Neutralization,Transformer,en
dc.relation.page156
dc.identifier.doi10.6342/NTU201804209
dc.rights.note未授權
dc.date.accepted2018-10-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
13.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved