Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21861
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor單偉彌(Vianney Denis)
dc.contributor.authorQi Chenen
dc.contributor.author陳其zh_TW
dc.date.accessioned2021-06-08T03:50:14Z-
dc.date.copyright2018-10-22
dc.date.issued2018
dc.date.submitted2018-10-19
dc.identifier.citationAdjeroud M, Kayal M, Iborra-Cantonnet C, Vercelloni J, Bosserelle P, Liao V, Chancerelle Y, Claudet J, Penin L (2018) Recovery of coral assemblages despite acute and recurrent disturbances on a South Central Pacific reef. Sci Rep 8(1):9680
Adjeroud M, Michonneau F, Edmunds PJ, Chancerelle Y, de Loma TL, Penin L, Thibaut L, Vidal-Dupiol J, Salvat B, Galzin R (2009) Recurrent disturbances, recovery trajectories, and resilience of coral assemblages on a South Central Pacific reef. Coral Reefs 28:775–780
Alexis D (2017) dunn.test: Dunn's Test of multiple comparisons using rank sums. R package version 1.3.5. https://CRAN.R-project.org/package=dunn.test
Alboukadel K, Fabian M (2017) factoextra: Extract and visualize the results of multivariate data analyses. R package version 1.0.4. https://CRAN.R-project.org/package=factoextra
Anthony KRN, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Bio Ecol 252:221–253
Anthony KRN, Hoegh-Guldberg O (2003) Variation in coral photosynthesis, respiration and growth characteristics in contrasting light microhabitats: An analogue to plants in forest gaps and understoreys? Funct Ecol 17:246–259
Ayre DJ, Hughes TP (2004) Climate change, genotypic diversity and gene flow in reef-building corals. Ecol Lett 7:273–278
Barfield S, Aglyamova G V, Matz M V (2016) Evolutionary origins of germline segregation in Metazoa: evidence for a germ stem cell lineage in the coral Orbicella faveolata (Cnidaria, Anthozoa). Proc R Soc B 283:20152128
Ben-Ari H, Paz M, Sher D (2018) The chemical armament of reef-building corals: Inter- and intra-specific variation and the identification of an unusual actinoporin in Stylophora pistilata. Sci Rep 8(1):251
Brown BE, Dunne RP, Phongsuwan N, Patchim L, Hawkridge JM (2014) The reef coral Goniastrea aspera: a “winner” becomes a “loser” during a severe bleaching event in Thailand. Coral Reefs 33:395–401
Büchi L, Vuilleumier S (2014) Coexistence of specialist and generalist species is shaped by dispersal and environmental factors. Am Nat 183:612–624
Cailliez F (1983) The analytical solution of the additive constant problem. Psychometrika 48:305–308
Caliński T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat Methods 3:1–27
Camp EF, Schoepf V, Mumby PJ, Hardtke LA, Rodolfo-metalpa R, Smith DJ, Suggett DJ (2018) The future of coral reefs subject to rapid climate change : lessons from natural extreme environments. Front Mar Sci 5:4
Le Campion Alsumard T, Golubic S, Hutchings P (1995) Microbial endoliths in skeletons of live and dead corals: Porites lobata (Moorea, French Polynesia). Mar Ecol Prog Ser 117:149–158
Cantin NE, Cohen AL, Karnauskas KB, Tarrant AM, McCorkle DC (2010) Ocean warming slows coral growth in the central Red Sea. Science 329:322–325
Chen CA, Shashank K (2009) Taiwan as a connective stepping-stone in the Kuroshio triangle and the conservation of coral ecosystems under the impacts of climate change. Kuroshio Sci 3:15–22
Crabbe MJC, Smith DJ (2006) Modelling variations in corallite morphology of Galaxea fascicularis coral colonies with depth and light on coastal fringing reefs in the Wakatobi Marine National Park (S.E. Sulawesi, Indonesia). Comput Biol Chem 30:155–159
Cunning R, Baker AC (2013) Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat Clim Chang 3:259–262
Dai CF, Horng S (2009) Scleractinia fauna of Taiwan I. complex group Taipei Natl Taiwan Univ
Darling ES, Alvarez-Filip L, Oliver TA, McClanahan TR, Côté IM (2012) Evaluating life-history strategies of reef corals from species traits. Ecol Lett 15:1378–1386
Darling ES, McClanahan TR, Côté IM (2013) Life histories predict coral community disassembly under multiple stressors. Glob Chang Biol 19:1930–1940
Darling ES, McClanahan TR, Maina J, Gurney G, Graham NAJ, et al. (submitted) Strategic conservation and management of coral reefs in the Anthropocene. Nat Ecol Evol.
Davy SK, Allemand D, Weis VM (2012) Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol Mol Biol Rev 76:229–261
Denis V, Soto D, De Palmas S, Lin YTV, Benayahu Y, Huang YM, Liu S-L, Chen J-W, Chen Q, Sturaro N, Ho M-J, Su Y, Dai CF, Chen CA Taiwan. In: Loya Y., Puglise K.A., Bridge T. (eds) Mesophotic coral ecosystems of the world. Springer International Publishing AG, In press.
Edinger EN, Risk MJ (1995) Preferential survivorship of brooding corals in a regional extinction. Paleontology 21:200–219
Edinger EN, Risk MJ (2000) Reef classification by coral morphology predicts coral reef conservation value. Biol Conserv 92:1–13
Edmunds PJ, Burgess SC, Putnam HM, Baskett ML, Bramanti L, Fabina NS, Han X, Lesser MP, Madin JS, Wall CB, Yost DM, Gates RD (2014) Evaluating the causal basis of ecological success within the scleractinia: an integral projection model approach. Mar Biol 161:2719–2734
Fagoonee I, Wilson HB, Hassell MP, Turner JR (1999) The dynamics of zooxanthellae populations: A long-term study in the field. Science 283:843–845
Falkowski PG, Dubinsky Z (1981) Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature 289:172–174
Felipe M (2016) agricolae: Statistical procedures for agricultural research. R package version 1.2-4. https://CRAN.R-project.org/package=agricolae
Ferrier-Pagès C, Allemand D, Gattuso J-P, Jaubert J, Rassoulzadegan F (1998) Microheterotrophy in the zooxanthellate coral Stylophora pistillata: effect of light and cilliate density. Limnol Oceanogr 43:1639–1648
Ferrier-Pagés C, Peirano A, Abbate M, Cocito S, Negri A, Rottier C, Riera P, Rodolfo-Metalpa R, Reynauda S (2011) Summer autotrophy and winter heterotrophy in the temperate symbiotic coral Cladocora caespitosa. Limnol Oceanogr 56:1429–1438
Ferrier-Pagès C, Witting J, Tambutté E, Sebens KP (2003) Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs 22:229–240
Fine M, Loya Y (2002) Endolithic algae: an alternative source of photoassimilates during coral bleaching. Proc R Soc B Biol Sci 269:1205–1210
Frank EHJ et al. (2018) Hmisc: Harrell Miscellaneous. R package version 4.1-1. https://CRAN.R-project.org/package=Hmisc
Gibbin EM, Krueger T, Putnam HM, Barott KL, Bodin J, Gates RD, Meibom A (2018) Short-term thermal acclimation modifies the metabolic condition of the coral holobiont. Front Mar Sci 5:1–11
Gomez ED, Alcala AC, Yap HT, Alcala LC, Aline PM (1985) Growth studies of commercially important scleractinians. Proceedings of the 5th International Coral Reef Congress, Tahiti 6, 199–204
Graham NAJ, Cinner JE, Norström A V., Nyström M (2014) Coral reefs as novel ecosystems: embracing new futures. Curr Opin Environ Sustain 7:9–14
Grime (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Evol Theory 111:1169–1194
Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189
Grottoli AG, Warner ME, Levas SJ, Aschaffenburg MD, Schoepf V, Mcginley M, Baumann J, Matsui Y (2014) The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob Chang Biol 20:3823–3833
Hadley W, Jim H, Winston C (2018) devtools: tools to make developing R packages easier. R package version 1.13.5. https://CRAN.R-project.org/package=devtools
Harborne AR, Rogers A, Bozec Y-M, Mumby PJ (2017) Multiple stressors and the functioning of coral reefs. Ann Rev Mar Sci 9:445–468
Heery EC, Hoeksema BW, Browne NK, Reimer JD, Ang PO, Huang D, Friess DA, Chou LM, Loke LHL, Saksena-Taylor P, Alsagoff N, Yeemin T, Sutthacheep M, Vo ST, Bos AR, Gumanao GS, Syed Hussein MA, Waheed Z, Lane DJW, Johan O, Kunzmann A, Jompa J, Suharsono, Taira D, Bauman AG, Todd PA (2018) Urban coral reefs: degradation and resilience of hard coral assemblages in coastal cities of East and Southeast Asia. Mar Pollut Bull 135:654–681
Hensher DA, Rose JM, Greene WH (2005) Applied choice analysis: a primer. Cambridge University Press.
Hennige SJ, Suggett DJ, Warner ME, McDougall KE, Smith DJ (2009) Photobiology of Symbiodinium revisited: bio-physical and bio-optical signatures. Coral Reefs 28:179–195
Heron SF, Maynard JA, Van Hooidonk R, Eakin CM (2016) Warming trends and bleaching stress of the world’s coral reefs 1985-2012. Sci Rep 6:38402
Hughes AR, Inouye BD, Johnson MTJ, Underwood N, Vellend M (2008) Ecological consequences of genetic diversity. Ecol Lett 11:609–623
Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC, Kleypas J, Van De Leemput IA, Lough JM, Morrison TH, Palumbi SR, Van Nes EH, Scheffer M (2017) Coral reefs in the Anthropocene. Nature 546:82–90
Hughes TP, Kerry JT, Baird AH, Connolly SR, Dietzel A, Eakin CM, Heron SF, Hoey AS, Hoogenboom MO, Liu G, McWilliam MJ, Pears RJ, Pratchett MS, Skirving WJ, Stella JS, Torda G (2018) Global warming transforms coral reef assemblages. Nature 556:492–496
Jari O, F. Guillaume B, Michael F, Roeland K, Pierre L, Dan M, Peter RM, R. B. O'Hara, Gavin LS, Peter S, M. Henry HS, Eduard S, Helene W (2017) vegan: community ecology package. R package version 2.4-5. https://CRAN.R-project.org/package=vegan
Kemp DW, Colella MA, Bartlett LA, Ruzicka RR, Porter JW, Fitt WK (2016) Life after cold death: Reef coral and coral reef responses to the 2010 cold water anomaly in the Florida Keys. Ecosphere 7:1–17
Kenkel CD, Matz M V. (2016) Gene expression plasticity as a mechanism of coral adaptation to a variable environment. Nat Ecol Evol 1:0014
Kleypas JA, McManus JW, Menez LAB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159
Koweek DA, Dunbar RB, Monismith SG, Mucciarone DA, Woodson CB, Samuel L (2015) High-resolution physical and biogeochemical variability from a shallow back reef on Ofu, American Samoa: an end-member perspective. Coral Reefs 34:979–991
Laliberté E, P Legendre (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299-305
Laliberté E, Legendre P, B Shipley (2014) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12.
Lenz EA, Edmunds PJ (2017) Branches and plates of the morphologically plastic coral Porites rus are insensitive to ocean acidification and warming. J Exp Mar Bio Ecol 486:188–194
Levas SJ, Grottoli AG, Hughes A, Osburn CL, Matsui Y (2013) Physiological and Biogeochemical Traits of Bleaching and Recovery in the Mounding Species of Coral Porites lobata: Implications for Resilience in Mounding Corals. PLoS One 8:32–35
Loya Y, Sakai K, Nakano Y, Woesik R Van (2001) Coral bleaching: the winners and the losers. Ecol Lett 4:122–131
Madin JS, Hoogenboom MO, Connolly SR, Darling ES, Falster DS, Huang D, Keith SA, Mizerek T, Pandolfi JM, Putnam HM, Baird AH (2016) A Trait-Based Approach to Advance Coral Reef Science. Trends Ecol Evol 31:419–428
Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2016). cluster: Cluster analysis basics and extensions. R package version 2.0.5.
McWilliam M, Hoogenboom MO, Baird AH, Kuo C-Y, Madin JS, Hughes TP (2018) Biogeographical disparity in the functional diversity and redundancy of corals. Proc Natl Acad Sci 115:3084–3089
Muscatine L (1990) The role of symbiotic algae in carbon and energy flux in reef corals. Ecosystems of the world. Coral Reefs
Norström A V., Nyström M, Lokrantz J, Folke C (2009) Alternative states on coral reefs: Beyond coral-macroalgal phase shifts. Mar Ecol Prog Ser 376:293–306
Ortiz J-C, Wolff NH, Anthony KRN, Devlin M, Lewis S, Mumby PJ (2018) Impaired recovery of the Great Barrier Reef under cumulative stress. Sci Adv 4:eaar6127
Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA (2014) Mechanisms of reef coral resistance to future climate change. Science 344:895-898
Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289-290
Pedro MA (2017) pairwiseAdonis: pairwise multilevel comparison using Adonis. R package version 0.0.1.
Polinski JM, Voss JD (2018) Evidence of photoacclimatization at mesophotic depths in the coral-Symbiodinium symbiosis at Flower Garden Banks National Marine Sanctuary and McGrail Bank. Coral Reefs 37:779–789
Rachello-Dolmen PG, Cleary DFR (2007) Relating coral species traits to environmental conditions in the Jakarta Bay/Pulau Seribu reef system, Indonesia. Estuar Coast Shelf Sci 73:816–826
Ralph PJ, Larkum AWD, Kühl M (2007) Photobiology of endolithic microorganisms in living coral skeletons: 1. Pigmentation, spectral reflectance and variable chlorophyll fluorescence analysis of endoliths in the massive corals Cyphastrea serailia, Porites lutea and Goniastrea australensis. Mar Biol 152:395–404
Raz-Bahat M, Douek J, Moiseeva E, Peters EC, Rinkevich B (2017) The digestive system of the stony coral Stylophora pistillata. Cell Tissue Res 368:311–323
Ribas-Deulofeu L, Denis V, De Palmas S, Kuo C-Y, Hsieh HJ, Chen CA (2016) Structure of benthic communities along the Taiwan latitudinal gradient. PLoS One 11:e0160601
Rodrigues LJ, Grottoli AG (2007) Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol Oceanogr 52:1874–1882
Roth MS (2014) The engine of the reef: Photobiology of the coral-algal symbiosis. Front Microbiol 5:1–22
Schlichter D, Zscharnack B, Krisch H (1995) Transfer of photoassimilates from endolithic algae to coral tissue. Naturwissenschaften 82:561–564
Schutter M, Crocker J, Paijmans A, Janse M, Osinga R, Verreth AJ, Wijffels RH (2010) The effect of different flow regimes on the growth and metabolic rates of the scleractinian coral Galaxea fascicularis. Coral Reefs 29:737–748
Seemann J, Carballo-bolaños R, Berry KL, González CT, Richter C, Leinfelder RR (2012) Importance of heterotrophic adaptations of corals to maintain energy reserves. Proc 12th Int Coral Reef Symp 9–13
Sher D, Zlotkin E (2009) A hydra with many heads: Protein and polypeptide toxins from hydra and their biological roles. Toxicon 54:1148–1161
Soto D, De Palmas S, Ho MJ, Denis V, Chen CA (2018) Spatial variation in the morphological traits of Pocillopora verrucosa along a depth gradient in Taiwan. PLoS One 13:e0202586
Swain TD, Vega-Perkins JB, Oestreich WK, Triebold C, DuBois E, Henss J, Baird A, Siple M, Backman V, Marcelino L (2016) Coral bleaching response index: a new tool to standardize and compare susceptibility to thermal bleaching. Glob Chang Biol 22:2475–2488
Taiyun W, Viliam S (2017) R package 'corrplot': Visualization of a correlation matrix (Version 0.84). Available from https://github.com/taiyun/corrplot
Thornhill DJ, Rotjan RD, Todd BD, Chilcoat GC, Iglesias-Prieto R, Kemp DW, LaJeunesse TC, Reynolds JMC, Schmidt GW, Shannon T, Warner ME, Fitt WK (2011) A connection between colony biomass and death in Caribbean reef-building corals. PLoS One 6:e29535
Titlyanov EA, Titlyanova TV, Yamazato K, Van Woesik R (2001) Photo-acclimation dynamics of the coral Stylophora pistillata to low and extremely low light. J Exp Mar Bio Ecol 263:211–225
Todd PA (2008) Morphological plasticity in scleractinian corals. Biol Rev 83:315–337
Todd PA, Sanderson PG, Chou LM (2001) Morphological variation in the polyps of the scleractinian coral Favia speciosa (Dana) around Singapore. Hydrobiologia 444:227–235
Tomanek L (2010) Variation in the heat shock response and its implication for predicting the effect of global climate change on species’ biogeographical distribution ranges and metabolic costs. J Exp Biol 213:971–979
Veron JEN (2000) Corals of the World, 3 vols. Townsville: Australian Institute of Marine Science.
Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C, Jung V, Messier J (2012) The return of the variance: intraspecific variability in community ecology. Trends Ecol Evol 27:244–252
Willi Y, Van Buskirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Annu Rev Ecol Evol Syst 37:433–458
Van Woesik R, Sakai K, Ganase A, Loya Y (2011) Revisiting the winners and the losers a decade after coral bleaching. Mar Ecol Prog Ser 434:67–76
Yang SH, Lee STM, Huang CR, Tseng CH, Chiang PW, Chen CP, Chen HJ, Tang SL (2016) Prevalence of potential nitrogen-fixing, green sulfur bacteria in the skeleton of reef-building coral Isopora palifera. Limnol Oceanogr 61:1078–1086
Yellowlees D, Rees TA V., Leggat W (2008) Metabolic interactions between algal symbionts and invertebrate hosts. Plant, Cell Environ 31:679–694
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21861-
dc.description.abstract種內變異性 (Intraspecific variability) 是天擇和物種適應的必要條件,因此它是物種生存的關鍵要素。目前,前人提出了四種珊瑚的適應策略 (Adaptive strategy, i.e., competitive, weedy, stress-tolerant and generalist), 但是這些策略都是利用珊瑚的性狀的平均值所定義的, 而完全沒有考慮珊瑚的性狀會隨著環境變化而改變。本研究旨在評估不同珊瑚種之間的種內變異性以及它們的來源,希望藉此檢驗將種內變異性整合進珊瑚的適應策略的可行性。在本研究中,我們選擇了四個對比的環境(台灣北部的淺水區, 綠島的淺水、深水區和潮池)和兩個對比的季節(夏天和冬天)進行採樣, 共採集了七種珊瑚,並且測量這些物種的八個和能量獲取和分配有關的性狀(corallite width, tissue biomass, Symbiodium density, cnidocyte density, chlorophyll b and c contents, host and zooxanthellae protein contents)。接著,我用高爾矩陣計算了這些樣本的性狀相似性並且將結果用PCoA呈現在一個性狀表現空間(Performance trait space)。在這個空間內,每個物種的性狀表現都被呈現在一個具有一定位置和大小的物種表現生態棲位 (Species performance niche)。一方面, 我用物種表現生態棲位的中心點來評估它們是否佔據同一個位置,並且用PERMANOVA來檢驗。另一方面, 我用性狀表現豐度 (Performance trait richness) 和性狀表現散佈 (Performance trait dispersion) 來代表這些物種的種內變異性。接著,我把種內變異性的來源分成了兩部分,環境條件間可變性和環境條件內可變性 (Between and within environmental condition variabilities)。最後,根據樣本的性狀,我用k均值聚類把樣本分成了幾個大類。我總共獲得了235個珊瑚的樣本,在性狀表現空間內,結果顯示所有的物種都具有獨特的位置和大小。在這些物種中,性狀表現豐度和性狀表現分佈都表明Stylophora pistillata 和Psammocora profundacella分別具有最大和最小的種內變異性,而其他的種則處於中間。 在環境條件間可變性的方面,我發現了很多性狀在不同環境間具有顯著統計差異,並且不同物種的性狀可變性(flexibility)也不一樣。而在環境條件內可變性的方面,我也發現Psammocora profundacella 和 Porites lutea 比Stylophora pistillata、 Cyphastrea sp.、Galaxea fascicularis 和Isopora palifera 具有較低的可變性。最後,k均值聚類把來自七個種的樣本分了四大類,我建議將每一類稱作戰術 (Tactic)。我之後又將戰術加入了對廣生種 (Generalist) 和狹生種 (Specialist) 的定義中。這種簡單的將珊瑚的適應性策略一分為二的框架考慮了種內變異性,可能可以更真實地反映自然界中的珊瑚適應性策略。最後,本研究為朝珊瑚的種內變異性整合進它們適應性策略的定義邁出了第一步。zh_TW
dc.description.abstractIntraspecific variability offers a ground for natural selection to operate and species to adapt. It represents a key factor for species survival. In corals, four adaptive strategies (i.e., competitive, weedy, stress-tolerant and generalist) were previously defined on the base of average trait values, which overlooked intraspecific variability in their response to different environmental conditions. Here, I assessed the intraspecific variability of coral species, explored its sources and examined the potential of integrating this variability into the definition of coral adaptive strategies. Eight physiological traits characterizing energy acquisition and allocation (i.e., corallite width, tissue biomass, Symbiodium density, cnidocyte density, chlorophyll b and c contents, host and zooxanthellae protein contents) were examined in seven coral species sampled in three contrasted habitats (i.e., shallow and deep of Green island, shallow of North of Taiwan and tidal pool) at two seasons (i.e., summer and winter). Individuals were compared for their trait similarity using Gower distance and visualized into a performance trait space using a Principal Coordinates Analysis (PCoA). Each species was characterized by the position and size of the species performance niche delineating all individuals of that species. The divergence of species performance niche was further examined by the position of their centroids and tested by permutational multivariate analysis of variance(PERMANOVA). The relative proportion of the species performance niche to the overall performance niche (i.e., species trait richness) and dispersion (i.e., species trait dispersion) were used to represent the intraspecific variability of that species. The sources of the intraspecific variability were then decomposed into between (BV) and within (WV) environmental condition variabilities. Eventually, k-means clustering was used to partition the individuals into k clusters based on their trait values. In total, we collected 235 samples and the result showed all the species exhibited different sizes of species performance niche and occupied different positions in our performance trait space. Among these species, both species trait richness and species trait dispersion showed Stylophora pistillata and Psammocora profundacella possessed the largest and smallest intraspecific variabilities, respectively, while other species resided in between. For BV, I detected extensive significant changes of traits across environmental conditions and species showed different traits flexibilities. For WV, Psammocora profundacella and Porites lutea showed significantly lower values than Stylophora pistillata, Cyphastrea sp., Galaxea fascicularis, and Isopora palifera. Lastly, all the individuals from the seven species were partitioned into four k-means clusters, which I proposed as tactics. I further add tactics into the definition of generalist and specialist, which may be a better framework of defining adaptive strategies with the consideration of intraspecific variability. Overall, this study constitutes a first step toward an integration of intraspecific variability into a definition of coral adaptive strategies.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:50:14Z (GMT). No. of bitstreams: 1
ntu-107-R04445134-1.pdf: 3573794 bytes, checksum: ff055694248e905739fd8eafc9cd8e58 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 i
摘要 iii
Abstract v
Introduction 1
Materials and methods 5
Study locations 5
Sample collection and preservation 6
Trait selection 7
Trait analysis 8
Data analysis 10
Results 15
Discussion 22
References 30
Figure contents 40
Table content 46
Supplementary materials 48
dc.language.isoen
dc.title珊瑚適應策略中整合種內變異性之研究zh_TW
dc.titleToward an integration of intraspecific variability in the definition of coral adaptive strategiesen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.coadvisor王慧瑜
dc.contributor.oralexamcommittee湯森林,柯佳吟
dc.subject.keyword種內變異性,性狀表現空間,性狀表現豐度,性狀表現散佈,適應性策略,zh_TW
dc.subject.keywordintraspecific variability,performance trait space,species performance richness,species performance dispersion,adaptive strategy,en
dc.relation.page61
dc.identifier.doi10.6342/NTU201804202
dc.rights.note未授權
dc.date.accepted2018-10-19
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept漁業科學研究所zh_TW
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved