請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21861完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 單偉彌(Vianney Denis) | |
| dc.contributor.author | Qi Chen | en |
| dc.contributor.author | 陳其 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:50:14Z | - |
| dc.date.copyright | 2018-10-22 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-10-19 | |
| dc.identifier.citation | Adjeroud M, Kayal M, Iborra-Cantonnet C, Vercelloni J, Bosserelle P, Liao V, Chancerelle Y, Claudet J, Penin L (2018) Recovery of coral assemblages despite acute and recurrent disturbances on a South Central Pacific reef. Sci Rep 8(1):9680
Adjeroud M, Michonneau F, Edmunds PJ, Chancerelle Y, de Loma TL, Penin L, Thibaut L, Vidal-Dupiol J, Salvat B, Galzin R (2009) Recurrent disturbances, recovery trajectories, and resilience of coral assemblages on a South Central Pacific reef. Coral Reefs 28:775–780 Alexis D (2017) dunn.test: Dunn's Test of multiple comparisons using rank sums. R package version 1.3.5. https://CRAN.R-project.org/package=dunn.test Alboukadel K, Fabian M (2017) factoextra: Extract and visualize the results of multivariate data analyses. R package version 1.0.4. https://CRAN.R-project.org/package=factoextra Anthony KRN, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Bio Ecol 252:221–253 Anthony KRN, Hoegh-Guldberg O (2003) Variation in coral photosynthesis, respiration and growth characteristics in contrasting light microhabitats: An analogue to plants in forest gaps and understoreys? Funct Ecol 17:246–259 Ayre DJ, Hughes TP (2004) Climate change, genotypic diversity and gene flow in reef-building corals. Ecol Lett 7:273–278 Barfield S, Aglyamova G V, Matz M V (2016) Evolutionary origins of germline segregation in Metazoa: evidence for a germ stem cell lineage in the coral Orbicella faveolata (Cnidaria, Anthozoa). Proc R Soc B 283:20152128 Ben-Ari H, Paz M, Sher D (2018) The chemical armament of reef-building corals: Inter- and intra-specific variation and the identification of an unusual actinoporin in Stylophora pistilata. Sci Rep 8(1):251 Brown BE, Dunne RP, Phongsuwan N, Patchim L, Hawkridge JM (2014) The reef coral Goniastrea aspera: a “winner” becomes a “loser” during a severe bleaching event in Thailand. Coral Reefs 33:395–401 Büchi L, Vuilleumier S (2014) Coexistence of specialist and generalist species is shaped by dispersal and environmental factors. Am Nat 183:612–624 Cailliez F (1983) The analytical solution of the additive constant problem. Psychometrika 48:305–308 Caliński T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat Methods 3:1–27 Camp EF, Schoepf V, Mumby PJ, Hardtke LA, Rodolfo-metalpa R, Smith DJ, Suggett DJ (2018) The future of coral reefs subject to rapid climate change : lessons from natural extreme environments. Front Mar Sci 5:4 Le Campion Alsumard T, Golubic S, Hutchings P (1995) Microbial endoliths in skeletons of live and dead corals: Porites lobata (Moorea, French Polynesia). Mar Ecol Prog Ser 117:149–158 Cantin NE, Cohen AL, Karnauskas KB, Tarrant AM, McCorkle DC (2010) Ocean warming slows coral growth in the central Red Sea. Science 329:322–325 Chen CA, Shashank K (2009) Taiwan as a connective stepping-stone in the Kuroshio triangle and the conservation of coral ecosystems under the impacts of climate change. Kuroshio Sci 3:15–22 Crabbe MJC, Smith DJ (2006) Modelling variations in corallite morphology of Galaxea fascicularis coral colonies with depth and light on coastal fringing reefs in the Wakatobi Marine National Park (S.E. Sulawesi, Indonesia). Comput Biol Chem 30:155–159 Cunning R, Baker AC (2013) Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat Clim Chang 3:259–262 Dai CF, Horng S (2009) Scleractinia fauna of Taiwan I. complex group Taipei Natl Taiwan Univ Darling ES, Alvarez-Filip L, Oliver TA, McClanahan TR, Côté IM (2012) Evaluating life-history strategies of reef corals from species traits. Ecol Lett 15:1378–1386 Darling ES, McClanahan TR, Côté IM (2013) Life histories predict coral community disassembly under multiple stressors. Glob Chang Biol 19:1930–1940 Darling ES, McClanahan TR, Maina J, Gurney G, Graham NAJ, et al. (submitted) Strategic conservation and management of coral reefs in the Anthropocene. Nat Ecol Evol. Davy SK, Allemand D, Weis VM (2012) Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol Mol Biol Rev 76:229–261 Denis V, Soto D, De Palmas S, Lin YTV, Benayahu Y, Huang YM, Liu S-L, Chen J-W, Chen Q, Sturaro N, Ho M-J, Su Y, Dai CF, Chen CA Taiwan. In: Loya Y., Puglise K.A., Bridge T. (eds) Mesophotic coral ecosystems of the world. Springer International Publishing AG, In press. Edinger EN, Risk MJ (1995) Preferential survivorship of brooding corals in a regional extinction. Paleontology 21:200–219 Edinger EN, Risk MJ (2000) Reef classification by coral morphology predicts coral reef conservation value. Biol Conserv 92:1–13 Edmunds PJ, Burgess SC, Putnam HM, Baskett ML, Bramanti L, Fabina NS, Han X, Lesser MP, Madin JS, Wall CB, Yost DM, Gates RD (2014) Evaluating the causal basis of ecological success within the scleractinia: an integral projection model approach. Mar Biol 161:2719–2734 Fagoonee I, Wilson HB, Hassell MP, Turner JR (1999) The dynamics of zooxanthellae populations: A long-term study in the field. Science 283:843–845 Falkowski PG, Dubinsky Z (1981) Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature 289:172–174 Felipe M (2016) agricolae: Statistical procedures for agricultural research. R package version 1.2-4. https://CRAN.R-project.org/package=agricolae Ferrier-Pagès C, Allemand D, Gattuso J-P, Jaubert J, Rassoulzadegan F (1998) Microheterotrophy in the zooxanthellate coral Stylophora pistillata: effect of light and cilliate density. Limnol Oceanogr 43:1639–1648 Ferrier-Pagés C, Peirano A, Abbate M, Cocito S, Negri A, Rottier C, Riera P, Rodolfo-Metalpa R, Reynauda S (2011) Summer autotrophy and winter heterotrophy in the temperate symbiotic coral Cladocora caespitosa. Limnol Oceanogr 56:1429–1438 Ferrier-Pagès C, Witting J, Tambutté E, Sebens KP (2003) Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs 22:229–240 Fine M, Loya Y (2002) Endolithic algae: an alternative source of photoassimilates during coral bleaching. Proc R Soc B Biol Sci 269:1205–1210 Frank EHJ et al. (2018) Hmisc: Harrell Miscellaneous. R package version 4.1-1. https://CRAN.R-project.org/package=Hmisc Gibbin EM, Krueger T, Putnam HM, Barott KL, Bodin J, Gates RD, Meibom A (2018) Short-term thermal acclimation modifies the metabolic condition of the coral holobiont. Front Mar Sci 5:1–11 Gomez ED, Alcala AC, Yap HT, Alcala LC, Aline PM (1985) Growth studies of commercially important scleractinians. Proceedings of the 5th International Coral Reef Congress, Tahiti 6, 199–204 Graham NAJ, Cinner JE, Norström A V., Nyström M (2014) Coral reefs as novel ecosystems: embracing new futures. Curr Opin Environ Sustain 7:9–14 Grime (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Evol Theory 111:1169–1194 Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189 Grottoli AG, Warner ME, Levas SJ, Aschaffenburg MD, Schoepf V, Mcginley M, Baumann J, Matsui Y (2014) The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob Chang Biol 20:3823–3833 Hadley W, Jim H, Winston C (2018) devtools: tools to make developing R packages easier. R package version 1.13.5. https://CRAN.R-project.org/package=devtools Harborne AR, Rogers A, Bozec Y-M, Mumby PJ (2017) Multiple stressors and the functioning of coral reefs. Ann Rev Mar Sci 9:445–468 Heery EC, Hoeksema BW, Browne NK, Reimer JD, Ang PO, Huang D, Friess DA, Chou LM, Loke LHL, Saksena-Taylor P, Alsagoff N, Yeemin T, Sutthacheep M, Vo ST, Bos AR, Gumanao GS, Syed Hussein MA, Waheed Z, Lane DJW, Johan O, Kunzmann A, Jompa J, Suharsono, Taira D, Bauman AG, Todd PA (2018) Urban coral reefs: degradation and resilience of hard coral assemblages in coastal cities of East and Southeast Asia. Mar Pollut Bull 135:654–681 Hensher DA, Rose JM, Greene WH (2005) Applied choice analysis: a primer. Cambridge University Press. Hennige SJ, Suggett DJ, Warner ME, McDougall KE, Smith DJ (2009) Photobiology of Symbiodinium revisited: bio-physical and bio-optical signatures. Coral Reefs 28:179–195 Heron SF, Maynard JA, Van Hooidonk R, Eakin CM (2016) Warming trends and bleaching stress of the world’s coral reefs 1985-2012. Sci Rep 6:38402 Hughes AR, Inouye BD, Johnson MTJ, Underwood N, Vellend M (2008) Ecological consequences of genetic diversity. Ecol Lett 11:609–623 Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC, Kleypas J, Van De Leemput IA, Lough JM, Morrison TH, Palumbi SR, Van Nes EH, Scheffer M (2017) Coral reefs in the Anthropocene. Nature 546:82–90 Hughes TP, Kerry JT, Baird AH, Connolly SR, Dietzel A, Eakin CM, Heron SF, Hoey AS, Hoogenboom MO, Liu G, McWilliam MJ, Pears RJ, Pratchett MS, Skirving WJ, Stella JS, Torda G (2018) Global warming transforms coral reef assemblages. Nature 556:492–496 Jari O, F. Guillaume B, Michael F, Roeland K, Pierre L, Dan M, Peter RM, R. B. O'Hara, Gavin LS, Peter S, M. Henry HS, Eduard S, Helene W (2017) vegan: community ecology package. R package version 2.4-5. https://CRAN.R-project.org/package=vegan Kemp DW, Colella MA, Bartlett LA, Ruzicka RR, Porter JW, Fitt WK (2016) Life after cold death: Reef coral and coral reef responses to the 2010 cold water anomaly in the Florida Keys. Ecosphere 7:1–17 Kenkel CD, Matz M V. (2016) Gene expression plasticity as a mechanism of coral adaptation to a variable environment. Nat Ecol Evol 1:0014 Kleypas JA, McManus JW, Menez LAB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159 Koweek DA, Dunbar RB, Monismith SG, Mucciarone DA, Woodson CB, Samuel L (2015) High-resolution physical and biogeochemical variability from a shallow back reef on Ofu, American Samoa: an end-member perspective. Coral Reefs 34:979–991 Laliberté E, P Legendre (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299-305 Laliberté E, Legendre P, B Shipley (2014) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12. Lenz EA, Edmunds PJ (2017) Branches and plates of the morphologically plastic coral Porites rus are insensitive to ocean acidification and warming. J Exp Mar Bio Ecol 486:188–194 Levas SJ, Grottoli AG, Hughes A, Osburn CL, Matsui Y (2013) Physiological and Biogeochemical Traits of Bleaching and Recovery in the Mounding Species of Coral Porites lobata: Implications for Resilience in Mounding Corals. PLoS One 8:32–35 Loya Y, Sakai K, Nakano Y, Woesik R Van (2001) Coral bleaching: the winners and the losers. Ecol Lett 4:122–131 Madin JS, Hoogenboom MO, Connolly SR, Darling ES, Falster DS, Huang D, Keith SA, Mizerek T, Pandolfi JM, Putnam HM, Baird AH (2016) A Trait-Based Approach to Advance Coral Reef Science. Trends Ecol Evol 31:419–428 Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2016). cluster: Cluster analysis basics and extensions. R package version 2.0.5. McWilliam M, Hoogenboom MO, Baird AH, Kuo C-Y, Madin JS, Hughes TP (2018) Biogeographical disparity in the functional diversity and redundancy of corals. Proc Natl Acad Sci 115:3084–3089 Muscatine L (1990) The role of symbiotic algae in carbon and energy flux in reef corals. Ecosystems of the world. Coral Reefs Norström A V., Nyström M, Lokrantz J, Folke C (2009) Alternative states on coral reefs: Beyond coral-macroalgal phase shifts. Mar Ecol Prog Ser 376:293–306 Ortiz J-C, Wolff NH, Anthony KRN, Devlin M, Lewis S, Mumby PJ (2018) Impaired recovery of the Great Barrier Reef under cumulative stress. Sci Adv 4:eaar6127 Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA (2014) Mechanisms of reef coral resistance to future climate change. Science 344:895-898 Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289-290 Pedro MA (2017) pairwiseAdonis: pairwise multilevel comparison using Adonis. R package version 0.0.1. Polinski JM, Voss JD (2018) Evidence of photoacclimatization at mesophotic depths in the coral-Symbiodinium symbiosis at Flower Garden Banks National Marine Sanctuary and McGrail Bank. Coral Reefs 37:779–789 Rachello-Dolmen PG, Cleary DFR (2007) Relating coral species traits to environmental conditions in the Jakarta Bay/Pulau Seribu reef system, Indonesia. Estuar Coast Shelf Sci 73:816–826 Ralph PJ, Larkum AWD, Kühl M (2007) Photobiology of endolithic microorganisms in living coral skeletons: 1. Pigmentation, spectral reflectance and variable chlorophyll fluorescence analysis of endoliths in the massive corals Cyphastrea serailia, Porites lutea and Goniastrea australensis. Mar Biol 152:395–404 Raz-Bahat M, Douek J, Moiseeva E, Peters EC, Rinkevich B (2017) The digestive system of the stony coral Stylophora pistillata. Cell Tissue Res 368:311–323 Ribas-Deulofeu L, Denis V, De Palmas S, Kuo C-Y, Hsieh HJ, Chen CA (2016) Structure of benthic communities along the Taiwan latitudinal gradient. PLoS One 11:e0160601 Rodrigues LJ, Grottoli AG (2007) Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol Oceanogr 52:1874–1882 Roth MS (2014) The engine of the reef: Photobiology of the coral-algal symbiosis. Front Microbiol 5:1–22 Schlichter D, Zscharnack B, Krisch H (1995) Transfer of photoassimilates from endolithic algae to coral tissue. Naturwissenschaften 82:561–564 Schutter M, Crocker J, Paijmans A, Janse M, Osinga R, Verreth AJ, Wijffels RH (2010) The effect of different flow regimes on the growth and metabolic rates of the scleractinian coral Galaxea fascicularis. Coral Reefs 29:737–748 Seemann J, Carballo-bolaños R, Berry KL, González CT, Richter C, Leinfelder RR (2012) Importance of heterotrophic adaptations of corals to maintain energy reserves. Proc 12th Int Coral Reef Symp 9–13 Sher D, Zlotkin E (2009) A hydra with many heads: Protein and polypeptide toxins from hydra and their biological roles. Toxicon 54:1148–1161 Soto D, De Palmas S, Ho MJ, Denis V, Chen CA (2018) Spatial variation in the morphological traits of Pocillopora verrucosa along a depth gradient in Taiwan. PLoS One 13:e0202586 Swain TD, Vega-Perkins JB, Oestreich WK, Triebold C, DuBois E, Henss J, Baird A, Siple M, Backman V, Marcelino L (2016) Coral bleaching response index: a new tool to standardize and compare susceptibility to thermal bleaching. Glob Chang Biol 22:2475–2488 Taiyun W, Viliam S (2017) R package 'corrplot': Visualization of a correlation matrix (Version 0.84). Available from https://github.com/taiyun/corrplot Thornhill DJ, Rotjan RD, Todd BD, Chilcoat GC, Iglesias-Prieto R, Kemp DW, LaJeunesse TC, Reynolds JMC, Schmidt GW, Shannon T, Warner ME, Fitt WK (2011) A connection between colony biomass and death in Caribbean reef-building corals. PLoS One 6:e29535 Titlyanov EA, Titlyanova TV, Yamazato K, Van Woesik R (2001) Photo-acclimation dynamics of the coral Stylophora pistillata to low and extremely low light. J Exp Mar Bio Ecol 263:211–225 Todd PA (2008) Morphological plasticity in scleractinian corals. Biol Rev 83:315–337 Todd PA, Sanderson PG, Chou LM (2001) Morphological variation in the polyps of the scleractinian coral Favia speciosa (Dana) around Singapore. Hydrobiologia 444:227–235 Tomanek L (2010) Variation in the heat shock response and its implication for predicting the effect of global climate change on species’ biogeographical distribution ranges and metabolic costs. J Exp Biol 213:971–979 Veron JEN (2000) Corals of the World, 3 vols. Townsville: Australian Institute of Marine Science. Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C, Jung V, Messier J (2012) The return of the variance: intraspecific variability in community ecology. Trends Ecol Evol 27:244–252 Willi Y, Van Buskirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Annu Rev Ecol Evol Syst 37:433–458 Van Woesik R, Sakai K, Ganase A, Loya Y (2011) Revisiting the winners and the losers a decade after coral bleaching. Mar Ecol Prog Ser 434:67–76 Yang SH, Lee STM, Huang CR, Tseng CH, Chiang PW, Chen CP, Chen HJ, Tang SL (2016) Prevalence of potential nitrogen-fixing, green sulfur bacteria in the skeleton of reef-building coral Isopora palifera. Limnol Oceanogr 61:1078–1086 Yellowlees D, Rees TA V., Leggat W (2008) Metabolic interactions between algal symbionts and invertebrate hosts. Plant, Cell Environ 31:679–694 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21861 | - |
| dc.description.abstract | 種內變異性 (Intraspecific variability) 是天擇和物種適應的必要條件,因此它是物種生存的關鍵要素。目前,前人提出了四種珊瑚的適應策略 (Adaptive strategy, i.e., competitive, weedy, stress-tolerant and generalist), 但是這些策略都是利用珊瑚的性狀的平均值所定義的, 而完全沒有考慮珊瑚的性狀會隨著環境變化而改變。本研究旨在評估不同珊瑚種之間的種內變異性以及它們的來源,希望藉此檢驗將種內變異性整合進珊瑚的適應策略的可行性。在本研究中,我們選擇了四個對比的環境(台灣北部的淺水區, 綠島的淺水、深水區和潮池)和兩個對比的季節(夏天和冬天)進行採樣, 共採集了七種珊瑚,並且測量這些物種的八個和能量獲取和分配有關的性狀(corallite width, tissue biomass, Symbiodium density, cnidocyte density, chlorophyll b and c contents, host and zooxanthellae protein contents)。接著,我用高爾矩陣計算了這些樣本的性狀相似性並且將結果用PCoA呈現在一個性狀表現空間(Performance trait space)。在這個空間內,每個物種的性狀表現都被呈現在一個具有一定位置和大小的物種表現生態棲位 (Species performance niche)。一方面, 我用物種表現生態棲位的中心點來評估它們是否佔據同一個位置,並且用PERMANOVA來檢驗。另一方面, 我用性狀表現豐度 (Performance trait richness) 和性狀表現散佈 (Performance trait dispersion) 來代表這些物種的種內變異性。接著,我把種內變異性的來源分成了兩部分,環境條件間可變性和環境條件內可變性 (Between and within environmental condition variabilities)。最後,根據樣本的性狀,我用k均值聚類把樣本分成了幾個大類。我總共獲得了235個珊瑚的樣本,在性狀表現空間內,結果顯示所有的物種都具有獨特的位置和大小。在這些物種中,性狀表現豐度和性狀表現分佈都表明Stylophora pistillata 和Psammocora profundacella分別具有最大和最小的種內變異性,而其他的種則處於中間。 在環境條件間可變性的方面,我發現了很多性狀在不同環境間具有顯著統計差異,並且不同物種的性狀可變性(flexibility)也不一樣。而在環境條件內可變性的方面,我也發現Psammocora profundacella 和 Porites lutea 比Stylophora pistillata、 Cyphastrea sp.、Galaxea fascicularis 和Isopora palifera 具有較低的可變性。最後,k均值聚類把來自七個種的樣本分了四大類,我建議將每一類稱作戰術 (Tactic)。我之後又將戰術加入了對廣生種 (Generalist) 和狹生種 (Specialist) 的定義中。這種簡單的將珊瑚的適應性策略一分為二的框架考慮了種內變異性,可能可以更真實地反映自然界中的珊瑚適應性策略。最後,本研究為朝珊瑚的種內變異性整合進它們適應性策略的定義邁出了第一步。 | zh_TW |
| dc.description.abstract | Intraspecific variability offers a ground for natural selection to operate and species to adapt. It represents a key factor for species survival. In corals, four adaptive strategies (i.e., competitive, weedy, stress-tolerant and generalist) were previously defined on the base of average trait values, which overlooked intraspecific variability in their response to different environmental conditions. Here, I assessed the intraspecific variability of coral species, explored its sources and examined the potential of integrating this variability into the definition of coral adaptive strategies. Eight physiological traits characterizing energy acquisition and allocation (i.e., corallite width, tissue biomass, Symbiodium density, cnidocyte density, chlorophyll b and c contents, host and zooxanthellae protein contents) were examined in seven coral species sampled in three contrasted habitats (i.e., shallow and deep of Green island, shallow of North of Taiwan and tidal pool) at two seasons (i.e., summer and winter). Individuals were compared for their trait similarity using Gower distance and visualized into a performance trait space using a Principal Coordinates Analysis (PCoA). Each species was characterized by the position and size of the species performance niche delineating all individuals of that species. The divergence of species performance niche was further examined by the position of their centroids and tested by permutational multivariate analysis of variance(PERMANOVA). The relative proportion of the species performance niche to the overall performance niche (i.e., species trait richness) and dispersion (i.e., species trait dispersion) were used to represent the intraspecific variability of that species. The sources of the intraspecific variability were then decomposed into between (BV) and within (WV) environmental condition variabilities. Eventually, k-means clustering was used to partition the individuals into k clusters based on their trait values. In total, we collected 235 samples and the result showed all the species exhibited different sizes of species performance niche and occupied different positions in our performance trait space. Among these species, both species trait richness and species trait dispersion showed Stylophora pistillata and Psammocora profundacella possessed the largest and smallest intraspecific variabilities, respectively, while other species resided in between. For BV, I detected extensive significant changes of traits across environmental conditions and species showed different traits flexibilities. For WV, Psammocora profundacella and Porites lutea showed significantly lower values than Stylophora pistillata, Cyphastrea sp., Galaxea fascicularis, and Isopora palifera. Lastly, all the individuals from the seven species were partitioned into four k-means clusters, which I proposed as tactics. I further add tactics into the definition of generalist and specialist, which may be a better framework of defining adaptive strategies with the consideration of intraspecific variability. Overall, this study constitutes a first step toward an integration of intraspecific variability into a definition of coral adaptive strategies. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:50:14Z (GMT). No. of bitstreams: 1 ntu-107-R04445134-1.pdf: 3573794 bytes, checksum: ff055694248e905739fd8eafc9cd8e58 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 i
摘要 iii Abstract v Introduction 1 Materials and methods 5 Study locations 5 Sample collection and preservation 6 Trait selection 7 Trait analysis 8 Data analysis 10 Results 15 Discussion 22 References 30 Figure contents 40 Table content 46 Supplementary materials 48 | |
| dc.language.iso | en | |
| dc.title | 珊瑚適應策略中整合種內變異性之研究 | zh_TW |
| dc.title | Toward an integration of intraspecific variability in the definition of coral adaptive strategies | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 王慧瑜 | |
| dc.contributor.oralexamcommittee | 湯森林,柯佳吟 | |
| dc.subject.keyword | 種內變異性,性狀表現空間,性狀表現豐度,性狀表現散佈,適應性策略, | zh_TW |
| dc.subject.keyword | intraspecific variability,performance trait space,species performance richness,species performance dispersion,adaptive strategy, | en |
| dc.relation.page | 61 | |
| dc.identifier.doi | 10.6342/NTU201804202 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-10-19 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 3.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
