請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21843
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張英峯(Ing-Feng Chang) | |
dc.contributor.author | Man-Hsuan Lee | en |
dc.contributor.author | 李曼瑄 | zh_TW |
dc.date.accessioned | 2021-06-08T03:49:20Z | - |
dc.date.copyright | 2021-01-07 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-12-28 | |
dc.identifier.citation | Acosta-Motos, J.R., Ortuño, M.F, Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M.J., and Hernandez, J.A. (2017) Plant responses to salt stress: Adaptive mechanisms. Agronomy 7, 18. Altmann T. (1998) Recent advances in brassinosteroid molecular genetics. Curr. Opin. Plant Biol 1, 378–383. Arc, E., Sechet, J., Corbineau, F., Rajjou, L., and Marion-Poll, A. (2013) ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front. Plant Sci. 4, 63. Argueso, C.T., Hansen, M., and Kieber, J.J. (2007) Regulation of ethylene biosynthesis. J. Plant Growth Regul. 262, 92-105. Asano, T., Hayashi, N., Kikuchi, S., and Ohsugi, R. (2012) CDPK-mediated abiotic stress signaling. Plant Sig. Behav. 7, 817–821. Bao, F., Shen, J., Brady, S.R., Muday, G.K., Asami, T., and Yang, Z. (2004) Brassinosteroids interact with auxin to promote lateral root development in A. thaliana. Plant Physiol. 134, 1–8. Benjamins, R., Malenica, N., and Luschnig, C. (2005) Regulating the regulator: The control of auxin transport. Bioessays 27, 1246–1255. Boller, T., Herner, R.C., and Kende, H. (1979) Assay for and enzymatic formation of an ethylene precursor, 1-aminocyclopropane--1-carboxylic acid. Planta 145, 293–303. Boudsocq, M., and Sheen, J. (2013) CDPKs in immune and stress signaling. Trends Plant Sci. 18, 30–40 Buer, C.S., Sukumar, P., and Muday, G.K. (2006) Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis. Plant Physiol. 140, 1384-1396. Cao, W.-H., Liu, J., He, X.-J., Mu, R.-L., Zhou, H.-L., Chen, S.-Y., and Zhang, J.-S. (2007) Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol. 143, 707-719. Chae, H.K., and Kieber, J.J. (2005) Eto Brute? Role of ACS turnover in regulating ethylene biosynthesis. Trends Plant Sci. 10, 291-6. Chae H.S, Faure F, Kieber J.J. (2003) The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell 15, 545–559. Chen, K., Li G.J., Bressan, R.A., Song, C.P., Zhu, J.K., Zhao, Y. (2019) Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol. 62, 25-54. Chen, R., Hilson, P., Sedbrook, J., Rosen, E., Caspar, T., and Masson, P.H. (1998) The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc. Natl. Acad. Sci. USA 95, 15112–15117. Cheng, S.H., Willmann, M.R., Chen, H.C., and Sheen, J. (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol. 129, 469-485. Chevalier, D., Morris, E.R., and Walker, J.C. (2009) 14-3-3 and FHA domains mediate phosphoprotein interactions. Annu. Rev. Plant Biol. 60, 67–91. Christians, M.J., Gingerich, D.J., Hansen, M., Binder, B.M., Kieber, J.J., et al. (2009) The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels. Plant J. 57, 332–345. Clouse, S. D. (1999) Molecular genetics of brassinosteroid action. Brassinosteroid: Steroidal Plant Hormones, 163-190. Clouse, S.D., and Sasse, J.M. (1998) Brassinosteroids: Essential regulators of plant growth and development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 427–451. Coblitz, B., Wu, M., Shikano, S., and Li, M. (2006) C-terminal binding: an expanded repertoire and function of 14-3-3 proteins. FEBS Lett. 580,1531-1535. Curran, A., Chang, I.F., Chang, C.L., Garg, S., Miguel, R.M., Barron, Y.D., Li, Y., Romanowsky, S., Cushman, J.C., Gribskov, M., Harmon, A.C., and Harper, J.F. (2011). Calcium-dependent protein kinases from Arabidopsis show substrate specificity differences in an analysis of 103 substrates. Front Plant Sci. 2, 36. Dammann, C., Ichida, A., Hong, B., Romanowsky, S.M., Hrabak, E.M., Harmon, A.C., Pickard, B.G., and Harper, J.F. (2003) Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis. Plant Physiol. 132, 1840-1848. Denison F. C., Paul A. L., Zupanska A. K., and Ferl R. J. (2011) 14-3-3 proteins in plant physiology. Semin. Cell Dev. Biol. 22, 720–727. Dharmasiri, N., Dharmasiri, S., and Estelle, M. (2005) The F-box protein TIR1 is an auxin receptor. Nature 435, 441–445. Dong, H., Zhen, Z., Peng, J., Chang, L., Gong, Q., and Wang, N.N. (2011) Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity and accumulation in Arabidopsis. J. Exp. Bot. 62, 4875-4887. Fasano, J.M., Swanson, S.J., Blancaflor, E.B., Dowd, P.E., Kao, T.H., and Gilroy, S. (2001) Changes in root cap pH are required for the gravity response of the Arabidopsis root. Plant Cell 13, 907-921. Felix, G., Grosskopf, D.G., Regenass, M., Basse, C.W., and Boller, T. (1991) Elicitor-induced ethylene biosynthesis in tomato cells-characterization and use as a bioassay for elicitor action. Plant Physiol. 97, 19-25. Ferl, R.J., Manak, M.S., Reyes, M.F. (2002) The 14-3-3s. Genome Biol. 3, reviews3010-1. Frattini, M., Morello, L., and Breviario, D. (1999) Rice calcium‐dependent protein kinase isoforms OsCDPK2 and OsCDPK11 show different responses to light and different expression patterns during seed development. Plant Mol. Biol. 41, 753–764. Friml, J., Benkova, E., Blilou, I., Wis´niewska, J., Hamann, T., Ljung, K., Woody, S., Sandberg, G., Scheres, B., Ju¨ rgens, G., and Palme, K. (2002) AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108, 661–673. Geldner, N., Friml, J., Stierhof, Y.D., Ju¨rgens, G., and Palme, K. (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413, 425–428. Gray, W.M., Kepinski, S., Rouse, D., Leyser, O., and Estelle, M. (2001) Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature 414, 271–276. Grosskopf, D.G., Felix, G., and Boller, T. (1990) K-252a inhibits the response of tomato cells to fungal elicitors in vivo and their microsomal protein kinase in vitro. FEBS Lett. 275, 177-180. Han, L., Li, G.J., Yang, K.Y., Mao, G., Wang, R., Liu, Y., and Zhang, S. (2010) Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis. Plant J. 64, 114-27. Hansen, M., Chae, H.S., and Kieber, J.J. (2009) Regulation of ACS protein stability by cytokinin and brassinosteroid. Plant J. 57, 606–614. Han, W., Rong, H., Zhang, H., Wang, M.H. (2009) Abscisic acid is a negative regulator of root gravitropism in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 378, 695–700. Hetherington, A.M., and Trewavas, A. (1984) Activation of a pea membrane protein kinase by calcium ions. Planta 161, 409-417. Hoffmann-Benning, S., and Kende, H. (1992) On the role of abscisic acid and gibberellin in the regulation of growth in rice. Plant Physiol. 99, 1156–1161. Huang S.J., Chang C.L., Wang P.H., Tsai M.C., Hsu P.H., and Chang I.F. (2013) A type III ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana. Journal of Experimental Botany 64, No. 14, pp. 4343–4360. Huang, X., Zhang, Q., Jiang, Y., Yang, C., Wang, Q., and Li, L. (2018) Shade-induced nuclear localization of PIF7 is regulated by phosphorylation and 14-3-3 proteins in Arabidopsis. eLife 7, e31636. Jaspert, N., Throm, C., and Oecking, C. (2011) Arabidopsis 14-3-3 proteins: fascinating and less fascinating aspects. Front Plant Sci. 2, 96. Johnson, P.R., and Ecker, J.R. (1998) The ethylene gas signal transduction pathway: a molecular perspective. Annu. Rev. Genet. 32, 227-54. Joo, S., Liu, Y., Lueth, A., and Zhang, S. (2008) MAPK phosphorylation-induced stabilization of ACS6 protein is mediated by the non-catalytic C-terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway. Plant J. 54, 129–140. Kepinski, S., and Leyser, O. (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435, 446–451. Kim, C.Y., Liu, Y., Thorne, E.T., Yang, H., Fukushige, H., Gassmann, W., Hildebrand, D., Sharp, R.E., and Zhang, S. (2003) Activation of a stress-responsive mitogen-activated protein kinase cascade induces the biosynthesis of ethylene in plants. Plant Cell 15, 2707–2718. Kiss, J.Z., Hertel, R., and Sack, F.D. (1989) Amyloplasts are necessary for full gravitropic sensitivity in roots of Arabidopsis thaliana. Planta 177, 198–206. Kramer, E.M., and Bennett, M.J. (2006) Auxin transport: A field in flux. Trends Plant Sci. 11, 382–386 LeNoble, M.E., Spollen, W.G., and Sharp, R.E. (2004) Maintenance of shoot growth by endogenous ABA: genetic assessment of the involvement of ethylene suppression. J. Exp. Bot. 55, 237–245. Li A.-L., Zhu Y.-F., Tan X.-M., Wang X., Wei B., Guo H.-Z., Zhang Z.-L., Chen X.-B., Zhao G.-Y., and Kong X.-Y. (2008) Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.) Plant Mol. Biol. 66, 429–443. Li, K., Yang, F., Zhang, G., Song, S., Li, Y., Ren, D., Miao, Y., and Song, C.P. (2017) AIK1, a mitogen-activated protein kinase, modulates abscisic acid responses through the MKK5-MPK6 kinase cascade. Plant Physiol. 173, 1391–1408. Li Li, Jian Xu, Zhi-Hong Xu, and Hong-Wei Xue. (2005) Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. Plant Cell. 17, 2738–2753. Liu, J., Rowe, J., and Lindsey, K. (2014) Hormonal crosstalk for root development: a combined experimental and modeling perspective. Front. Plant Sci. 5, 116. Liu, Y.D., and Zhang, S.Q. (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16, 3386-3399. Ludwików, A.; Cie´sla, A.; Kasprowicz-Malu´ski, A.; Mitula, F.; Tajdel, M.; Galganski, L.; Ziolkowski, P.; Kubiak, P.; Małecka, A.; Piechalak, A.; et al. (2014) Arabidopsis protein phosphatase 2C ABI1 interacts with type I ACC synthases and is involved in the regulation of ozone-induced ethylene biosynthesis. Mol. Plant 7, 960–976. Luschnig, C., Gaxiola, R.A., Grisafi, P., and Fink, G.R. (1998) EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 12, 2175–2187. Lyzenga, W.J.; Booth, J.K.; Stone, S.L. (2012) The Arabidopsis RING-type E3 ligase XBAT32 mediates the proteasomal degradation of the ethylene biosynthetic enzyme, 1-aminocyclopropane-1-carboxylate synthase 7. Plant J. 71, 23–34. Madlung, A., Behringer, F.J., and Lomax, T.L. (1999) Ethylene plays multiple nonprimary roles in modulating the gravitropic response in tomato. Plant Physiol. 120, 897-906. Mandava, N.B. (1998) Plant growth promoting brassinosteroids. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39, 23–52. Marczak, M., Cie´sla, A., Janicki, M., Kasprowicz-Malu´ski, A., Kubiak, P., and Ludwików, A. (2020) Protein phosphatases type 2C Group A interact with and regulate the stability of ACC synthase 7 in Arabidopsis. Cells 9, 978. Maren Müller and Sergi Munné-Bosch. (2015) Ethylene response factors: A Key Regulatory Hub in Hormone and Stress Signaling. Plant Physiol. 169, pp. 32–41 Más, P., Kim, W. Y., Somers, D. E., Kay, S. A. (2003) Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature, 426, 567-570. Mir, R., Aranda L.Z., Biaocchi, T., Luo, A., Sylvester, A.W., and Rasmussen, C.G. (2017) A DII domain-based auxin reporter uncovers low auxin signaling during telophase and early G1. Plant Physiol. 173, 863–871. Mitula, F.; Tajdel, M.; Cie´sla, A.; Kasprowicz-Malu´ski, A.; Kulik, A.; Babula-Skowronska, D.; Michalak, M.; Dobrowolska, G.; Sadowski, J.; Ludwików, A. (2015) Arabidopsis ABA-activated kinase MAPKKK18 is regulated by protein phosphatase 2C ABI1 and the ubiquitin-proteasome pathway. Plant Cell Physiol. 56, 2351–2367 Mohanta, T.K., Yadav, D., Khan, A.L., Hashem, A., Abd_Allah, E.F., and Al-Harrasi, A. (2019) Molecular players of EF-hand containing calcium signaling event in plants. Int. J. Mol. Sci. 20, 1476. Morita, M.T. (2010) Directional gravity sensing in gravitropism. Annu Rev Plant Biol, 61, 705-720. Moulia, B., and Fournier, M. (2009) The power and control of gravitropic movements in plants: A biomechanical and systems biology view. J. Exp. Bot. 60, 461–486. Mu¨ller, A., Guan, C., Ga¨ lweiler, L., Ta¨ nzler, P., Huijser, P., Marchant, A., Parry, G., Bennett, M., Wisman, E., and Palme, K. (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J. 17, 6903–6911. Muslin, A.J., Tanner, J.W., Allen, P.M., and Shaw, A.S. (1996) Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84, 889-897. Munns, R. (2002) Comparative physiology of salt and water stress. Plant Cell Environ. 25, 239-250. Nakamura, A., Higuchi, K., Goda, H., Fujiwara, M.T., Sawa, S., Koshiba, T., Shimada, Y., and Yoshida, S. (2003). Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling. Plant Physiol. 133, 1843–1853. Oliva, M., and Dunand, C. (2007) Waving and skewing: how gravity and the surface of growth media affect root development in Arabidopsis. New Phytol. 176, 37–43. Ottenschläger, I., Wolff, P., Wolverton, C., Bhalerao, R.P., Sandberg, G., Ishikawa, H., Evans, M., and Palme, K. (2003) Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc. Natl. Acad. Sci. USA 100, 2987–2991 Paiardini, A., Aducci, P., Cervoni, L., Cutruzzolà, F., Di Lucente, C., Janson, G., et al. (2014) The phytotoxin fusicoccin differently regulates 14-3-3 proteins association to mode III targets. IUBMB Life 66, 52–62. Peng, H.P.; Lin, T.Y.; Wang, N.N.; and Shih, M.C. (2005) Differential expression of genes encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis during hypoxia. Plant Mol. Biol. 58, 15–25. Peng, J., Li, Z., Wen, X., Li, W., Shi, H., Yang, L., Zhu, H., and Guo, H. (2014) Saltinduced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS Genet. 10, e1004664. Pennington, K.L., Chan, T.Y., Torres, M.P., and Andersen, J.L. (2018) The dynamic and stress-adaptive signaling hub of 14-3-3: emerging mechanisms of regulation and context-dependent protein–protein interactions. Oncogene 37, 5587–5604. Perera, I.Y., Hung, C.Y., Brady, S., Muday, G.K., and Boss, W.F. (2006) A universal role for inositol 1,4,5-trisphosphate-mediated signaling in plant gravitropism. Plant Physiol. 140, 746-760. Philosoph-Hadas, S., Meir, S., Rosenberger, I., and Halevy, A.H. (1996) Regulation of the gravitropic response and ethylene biosynthesis in gravistimulated snapdragon spikes by calcium chelators and ethylene inhibitors. Plant Physiol. 110, 301-310. Pintard, L., Willems, A., and Peter, M. (2004) Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family. EMBO J. 23, 1681-7. Plieth, C., and Trewavas, A.J. (2002). Reorientation of seedlings in the earth's gravitational field induces cytosolic calcium transients. Plant Physiol. 129, 786-796. Poovaiah, B.W., Du, L., Wang, H., and Yang, T. (2013) Recent advances in calcium/calmodulin‐mediated signaling with an emphasis on plant–microbe interactions. Plant Physiol. 163: 531–542. Qiu, Q.S., Guo, Y., Dietrich, M.A., Schumaker, K.S., and Zhu, J.K. (2002) Regulation of SOS1 a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana by SOS2 and SOS3. Proc. Natl. Acad. Sci. USA 99, 8436–8441. Quan, R., Lin, H., Mendoza, I., Zhang, Y., Cao, W., Yang, Y., Shang, M., Chen, S., Pardo, J.M., and Guo, Y. (2007) SCABP8/CBL10 a putative calcium sensor interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell 19, 1415–1431. Rakitina, T.Y., Vlasov, P.V., Jalilova, F.K., and Kefeli, V.I. (1994) Abscisic acid and ethylene in mutants of Arabidopsis thaliana differing in their resistance to ultraviolet (UV-B) radiation stress. Russ. J. Plant Physiol. 41, 599–603. Romeis T. (2001) Protein kinases in the plant defence response. Curr. Opin. Plant Biol. 4, 807–814. Rowe, J.H., Topping, J.F., Liu, J., and Lindsey, K. (2016) Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. New Phytol. 211, 225–239. Rudd, J.J., and Franklin-Tong, V.E. (2001) Unravelling responsespecificity in Ca2+ signalling pathways in plant cells. New Phytol. 151, 7–33. Sack FD, Suyemoto MM, and Leopold AC. (1985) Amyloplast sedimentation kinetics in gravistimulated maize roots. Planta 165, 295–300. Sairam, R.K., and Tyagi, A. (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr. Sci. 86, 407-421. Salehin M, Bagchi R, and Estelle M. (2015) SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development. Plant Cell 27, 9– 19 Sanders, D., Brownlee, C., and Harper, J.F. (1999) Communicating with calcium. Plant Cell 11, 691-706. Sasse, J. M. (2003) Physiological actions of brassinosteroids: an update. J. Plant Growth Regul. 22, 276-288. Sato, H., Takasaki, H., Takahashi, F., Suzuki, T., Iuchi, S., Mitsuda, N., Ohme-Takagi, M., Ikeda, M., Seo, M., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2018) Arabidopsis thaliana NGATHA1 transcription factor induces ABA biosynthesis by activating NCED3 gene during dehydration stress. Proc. Natl. Acad. Sci. U.S.A. 115, E11178-E11187. Sehnke, P.C., DeLille, J.M., and Ferl, R.J. (2002) Consummating signal transduction: The role of 14-3-3 proteins in the completion of signal-induced transitions in protein activity. Plant Cell 14, S339-S354. Shaner NC, Steinbach PA, and Tsien RY. (2005) A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909. Simeunovic, A.; Mair, A.; Wurzinger, B.; and Teige, M. (2016) Know where your clients are: Subcellular localization and targets of calcium-dependent protein kinases. J. Exp. Bot. 67, 3855–3872. Singh, M., Gupta, A., and Laxmi, A. (2017) Striking the right chord: signaling enigma during root gravitropism. Front. Plant Sci. 8, 1304. Spanu, P., Grosskopf, D.G., Felix, G., and Boller, T. (1994) The apparent turnover of 1-aminocyclopropane-1-carboxylate synthase in tomato cells is regulated by protein phosphorylation and dephosphorylation. Plant Physiol. 106, 529-535. Shi., S., Li., S., Asim, M., Mao, J., Xu, D., Ullah, Z., Liu, G., Wang, Q., and Liu, H. (2018) The Arabidopsis calcium-dependent protein kinases (CDPKs) and their roles in plant growth regulation and abiotic stress responses. Int. J. Mol. Sci. 19, 1900. Tal, M. (1979) Abnormal stomatal behavior and hormonal imbalance in flacca, a wilty mutant of tomato. Plant Physiol. 63, 1044–1048. Tsuchisaka, A., and Theologis, A. (2004) Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol. 136, 2982–3000. Utsuno, K., Shikanai, T., Yamada, Y., and Hashimoto, T. (1998) AGR, an agravitropic locus of Arabidopsis thaliana, encodes a novel membrane-protein family member. Plant Cell Physiol. 39, 1111–1118. Valmonte, G.R.; Arthur, K.; Higgins, C.M.; and MacDiarmid, R.M. (2014) Calcium-dependent protein kinases in plants: Evolution, expression and function. Plant Cell Physiol. 55, 551–569. van der Weele, C.M., Spollen, W.G., Sharp, R.E., and Baskin, T.I. (2000) Growth of Arabidopsis thaliana seedlings underwater deficit studied by control of water potential in nutrient-agar media. J. Exp. Bot. 51, 1555–1562. Vandenbussche, F., Smalle, J., Le, J., Saibo, N. J. M., De Paepe, A., Chaerle, L., et al. (2003) The Arabidopsis mutant alh1 illustrates a cross talk between ethylene and auxin. Plant Physiol. 131, 1228–1238. Vandenbussche, F., and Van Der Straeten, D. (2007) One for all and all for one: crosstalk of multiple signals controlling the plant phenotype. J. Plant Growth Regul. 26, 178–187. Vanneste, S., and Friml, J. (2009) Auxin: A trigger for change in plant development. Cell. 136, 1005-1016. Wang, H., Yang, C., Zhang, C., Wang, N., Lu, D., Wang, J., Zhang, S., Wang, Z.X, Ma, H., Wang, X. (2011) Dual role of BKI1 and 14-3-3 s in brassinosteroid signaling to link receptor with transcription factors. Dev. Cell 21, 825– 834. Wang, K.L., Li, H., Ecker, J.R. (2002) Ethylene biosynthesis and signalling networks. Plant Cell 14, Supplement, S131–S151. Wang, K.L., Yoshida, H., Lurin, C., and Ecker, J.R. (2004) Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428, 945-950. Wang, N.N.; Shih, M.C.; and Li, N. (2005) The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACS7 induced by hormones and stresses. J. Exp. Bot. 56, 909–920. Wang, P. H., Lee, C. E., Lin, Y. S., Lee, M. H., Chen, P. Y., Chang, H. C., and Chang, I. F. (2019) The glutamate receptor-like protein GLR3.7 interacts with 14-3-3ω and participates in salt stress response in Arabidopsis thaliana. Front. Plant Sci. 10, 1169. Xiong, L and Zhu, J.K. (2002) Salt tolerance. Arabidopsis Book. 1, e0048. Xiong, L., Xiao, D., Xu, X., Guo, Z., and Wang, N.N. (2014) The non-catalytic N-terminal domain of ACS7 is involved in the post-translational regulation of this gene in Arabidopsis. J. Exp. Bot. 65, 4397–4408. Yaffe, M.B., Rittinger, K., Volinia, S., Caron, P.R., Aitken, A., Leffers, H., Gamblin, S.J., Smerdon, S.J., and Cantley, L.C. (1997) The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91, 961-71. Yamagami, T.; Tsuchisaka, A.; Yamada, K.; Haddon, W.F.; Harden, L.A.; and Theologis, A. (2003) Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J. Biol. Chem. 278, 49102–49112. Yang, Q.; Chen, Z.Z.; Zhou, X.F.; Yin, H.B.; Li, X.; Xin, X.F.; Hong, X.H.; Zhu, J.K.; and Gong, Z. (2009) Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol. Plant 2, 22–31. Yang, S.F., Hoffman, N.E. (1984) Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Physiol. 35, 155–189. Yokota, T. (1997) The structure, biosynthesis and function of brassinosteroids. Trends Plant Sci 2, 137–143. Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565-1572. Yoon, G.M., and Kieber, J.J. (2013) 14-3-3 regulates 1-aminocyclopropane-1-carboxylate synthase protein turnover in Arabidopsis. The Plant Cell 25, 1016–1028. Yoon, G.M. (2015) New insights into the protein turnover regulation in ethylene biosynthesis. Mol. Cells 38, 597-603. Yoshida, H., Nagata, M., Saito, K., Wang, K.L., and Ecker, J.R. (2005) Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases. BMC Plant Biol. 5, 14. Zhang, X., Henriques, R., Lin, S.S., Niu, Q.W., and Chua, N.H. (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protocol 1, 641-646. Zhou H, Lin H., Chen, S., Becker, K., Yang, Y., Zhao, J., Kudla, J., Schumaker, K.S., Guo Y. (2014) Inhibition of the Arabidopsis salt overly sensitive pathway by 14-3-3 proteins. Plant Cell 26, 1166–1182. Zhu, J.; Fu, X.; Koo, Y.D.; Zhu, J.K.; Jenney, F.E., Jr.; Adams, M.W.; Zhu, Y.; Shi, H.; Yun, D.J.; Hasegawa, P.M.; et al. (2007) An enhancer mutant of Arabidopsis salt overly sensitive 3 mediates both ion homeostasis and the oxidative stress response. Mol. Cell Biol. 27, 5214–5224. Zhu, J.K. (2002) Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53, 247–273. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21843 | - |
dc.description.abstract | 乙烯是調節植物發育過程的重要植物荷爾蒙之一。1-氨基環丙烷-1-羧化合成酶(ACS)蛋白質在乙烯生合成途徑扮演關鍵角色。第三型ACS7具有非常短的C端延伸,缺乏鈣離子依賴性蛋白質激酶(CDPK)和絲裂原活化蛋白質激酶6 (MPK6)可被磷酸化之位點,但之前研究發現ACS7可以被CDPK16磷酸化,並鑑定出三個磷酸化位點。然而目前仍未知ACS7的三個磷酸化位點在蛋白穩定度及活性的功能。另一方面,先前的研究發現阿拉伯芥acs7-1突變體有較高的耐鹽性,且在我們先前的研究顯示acs7-1突變體在根向地性對鈣離子通道阻斷劑氯化鋰不敏感。為了探討ACS7的三個磷酸化位點在根向地性及耐鹽性的功能,本研究以油菜內酯、離層酸、鹽及氯化鋰或鈣離子螯合劑BAPTA進行處理。acs7-1突變體幼苗在向地性顯示對氯化鋰、離層酸及BAPTA較不敏感,但對油菜內酯較敏感。此外,ACS7的三個磷酸化位點之點突變轉殖株對鹽分之耐受性及氯化鋰處理下之根向地性抑制程度與未突變之轉殖株有別。另外,似乎在Ser216, Thr296, 和Ser299點突變之ACS7-GUS轉殖株中ACS7蛋白質穩定性較未突變之轉殖株差,且ACS7的三個磷酸化位點突變之ACS7重組蛋白質比未突變者酵素活性來得低,因此,本研究發現ACS7的三個磷酸化位點會影響ACS7蛋白質的活性且似乎也會影響蛋白穩定性。 | zh_TW |
dc.description.abstract | Ethylene is one of the important plant hormones that regulate the developmental processes in plants. 1-aminocyclopropane-1-carboxylase synthase (ACS) proteins play important role in the ethylene biosynthesis pathway. Type III protein ACS7 has a very short C-terminal extension that lacks both predicted calcium-dependent protein kinase (CDPK) and mitogen-activated protein kinase 6 (MPK6) phosphorylation sites. Our previous study showed that ACS7 protein can be phosphorylated by CDPK16 in vitro, and identified three phosphorylation sites. However, the function of the three phosphorylation sites in ACS7 protein stability and activity are still unknown. On the other hand, previous studies showed acs7-1 mutant had a higher salt tolerance in Arabidopsis. acs7-1 mutant showed insensitive to lithum chloride, a calcium channel blocker, in root gravitropism in our previous study. In order to investigate the function of the three phosphorylation sites of ACS7 in root gravitropism and salt tolerance, brassinolide (BL), abscisic acid (ABA), salt, and LiCl or a calcium chelator, 1,2-bis (o-aminophenoxy) ethane-N,N,N’ ,N’ -tetraacetic acid (BAPTA) were introduced in this study. In the acs7-1 mutant, the seedlings showed less sensitive to LiCl, ABA, and BAPTA, but it’s more sensitive to BL in root gravitropism. In addition, the three phosphorylation site Ser216, Thr296, and Ser299 mutated ACS7-β-Glucuronidase (GUS) transgenic lines exhibited differential salt tolerance and root gravitropism in comparison to non-mutated transgenic lines. On the other hand, ACS7 phosphorylation site Ser216, Thr296, and Ser299 point mutated GUS transgenic lines appear to show less protein stability compared to none mutated line. Moreover, ACS7 phosphorylation site point mutated recombinant protein exhibited lower ACS7 enzyme activity than none mutated one. Taken together, the three phosphorylation sites of ACS7 can affect protein activity and appear to affect protein stability of ACS7. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:49:20Z (GMT). No. of bitstreams: 1 U0001-2412202015371300.pdf: 4790462 bytes, checksum: 4681c2a6413e11578ddae6782f8df073 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 致謝…………………………………………………………………………………….I 摘要................................................................II Abstract............................................................III Contents.............................................................V List of Table………………………………………………………………………..X List of Figures……………………………………………………………………..XI List of Supplementary data…………………………………………………………XIII List of Appendixes……………………………………………………………...….XIV Abbreviation………………………………………………………………………..XVI 1. Introduction……………………………………………………………………...1 1.1 Ethylene biosynthesis pathway……………………………………………….1 1.2 ACC synthase and the regulation on protein stability………………..2 1.3 14-3-3 proteins………………………………………………………………...4 1.4 Calcium signaling……………………………………………………………...5 1.5 Calcium-dependent protein kinase (CDPK)……………….....……………6 1.5.1 The Arabidopsis CDPK gene family………………………………........6 1.5.2 Functional domains of CDPKs…………………………………….........6 1.6 Root gravity response………………………………………………………...7 1.7 Plant hormone auxin in root gravity response…………………………..8 1.8 Aux/IAA-based reporter, domain II (DII)-VENUS………………………….9 1.9 Plant hormone brassinosteroids in root gravity response……………10 1.10 Plant hormone abscisic acid……………………………………………….11 1.11 Salt stress responses in plants………………………………………….12 1.12 Ethylene signaling in salt-stress tolerance in plants…………...12 1.13 Project goals………………………………………………………………...13 2. Materials and Methods………………………………………………………….16 2.1 Plant materials and plant growth conditions…………………………..16 2.2 Escherichia coli transformation…………………………………………..16 2.3 Agrobacterium tumefaciens transformation……………………………….17 2.4 Floral dipping………………………………………………………………...17 2.5 Purification of glutathione S-transferase (GST)-tagged proteins..18 2.6 Purification of 6His-SUMO-ACS7 recombinant proteins…………………19 2.7 Protein quantification by Bradford assay……………………………….20 2.8 Isolation of Arabidopsis leaf protoplasts for bimolecular fluorescence complementation (BiFC) assay………………………………………….…......20 2.9 Transformation of plasmids for BiFC analysis in Arabidopsis protoplasts…..21 2.10 In vitro kinase assay………………………………………………………...........22 2.11 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and western blot…………………………………………………........................22 2.12 RNA extraction and gene expression analysis……………………….............24 2.13 Semi-quantitative and quantitative real-time PCR analysis……………….....24 2.14 Root curvature and the ratio of gravity sustaining measurement………......25 2.15 Primary root length measurement…………………………………………...........25 2.16 Seed germination rate and floral dipping measurement…………………........26 2.17 in vitro ACS7 enzyme activity assay……………………………………….........26 2.18 Phosphoproteome analysis……………………………………………................27 2.19 DII-VENUS fluorescence observation in roots…………………………...........30 2.20 Histochemical β-Glucuronidase (GUS) staining………………………...........30 2.21 Protein degradation assay……………………………………………….............31 2.22 Cell-free protein degradation assay……………………………………….........31 3 Results…………………………………………………………………………..............33 3.1 Isolation of T-DNA insertional mutant acs7-1 and generation of ACS7 transgenic lines…………………………………………………………….................33 3.2 Observation of DII-VENUS fluorescence in roots against gravity under multiple drug-treated conditions…………………………………………….............34 3.3 Gravity response and root curvature of acs7-1 mutant line against gravity under BAPTA-treated condition……………………………………………………................35 3.4 Gravity response of ACS7 transgenic lines and acs7-1 mutant line under BL- treated condition……………………………………………………………................36 3.5 Primary root growth and root curvature of acs7-1 mutant line in ABA response……………………………………………………………………...................37 3.6 Root curvature of ACS7 transgenic lines and acs7-1 mutant line against gravity under LiCl-treated condition………………………………………………...............37 3.7 Survival percentage of ACS7 transgenic lines and acs7-1 mutant line under salt stress condition…………………………………………………………….................39 3.8 In vitro enzyme activity assay of three phosphorylation site mutated variants of ACS7 recombinant proteins…………………………………………………................39 3.9 Expression pattern of ACS7-GUS lines in multiple treatment conditions…....40 3.10 Protein degradation assay of ACS7-GUS lines……………………….............41 4 Discussion……………………………………………………………………….............43 4.1 The function of the three phosphorylation sites of ACS7 in stability and activity……………………………………………………………………….................43 4.2 The function of the three phosphorylation sites of ACS7 in survival percentage.....................................................................45 4.3 The relationship between ACS7 and ABA………………………………..............45 4.4 Phenotype of acs7-1 in BAPTA treatment in root gravitropism……………......46 4.5 Phenotype of acs7-1 in BL treatment in root gravitropism……………….......46 4.6 Fluorescence analysis of DII-VENUS under different treatment conditions....47 References…………………………………………………………………….................49 Table……………………………………………………………………………................69 Figures…………………………………………………………………………................70 Supplementary data……………………………………………………………...............89 Appendixes……………………………………………………………………................101 | |
dc.language.iso | zh-TW | |
dc.title | ACS7磷酸化在阿拉伯芥根向地性與鹽耐受性之功能性研究 | zh_TW |
dc.title | Functional study of ACS7 phosphorylation in root gravitropism and salt tolerance in Arabidopsis thaliana | en |
dc.type | Thesis | |
dc.date.schoolyear | 109-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 靳宗洛(Tsung-Luo Jinn), 鄭秋萍(Chiu-Ping Cheng), 李金美(Chin-Mei Lee),吳俊達(Chun-Ta Wu) | |
dc.subject.keyword | 乙烯,ACS7,磷酸化,鹽,離層酸,活性,穩定度, | zh_TW |
dc.subject.keyword | Ethylene,ACS7,phosphorylation,salt,ABA,activity,stability, | en |
dc.relation.page | 112 | |
dc.identifier.doi | 10.6342/NTU202004456 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-12-29 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 植物科學研究所 | zh_TW |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2412202015371300.pdf 目前未授權公開取用 | 4.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。