請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21837完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 余明俊 | |
| dc.contributor.author | Kityee Wong | en |
| dc.contributor.author | 黃潔儀 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:49:04Z | - |
| dc.date.copyright | 2019-03-05 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-12-11 | |
| dc.identifier.citation | 1. Ikeda, M. and T. Matsuzaki, Regulation of aquaporins by vasopressin in the kidney. Vitam Horm, 2015. 98: p. 307-37.
2. Knepper, M.A., T.H. Kwon, and S. Nielsen, Molecular Physiology of Water Balance. N Engl J Med, 2015. 373(2): p. 196. 3. Park, E.J. and T.H. Kwon, A Minireview on Vasopressin-regulated Aquaporin-2 in Kidney Collecting Duct Cells. Electrolyte Blood Press, 2015. 13(1): p. 1-6. 4. Kwon, T.H., J. Frokiaer, and S. Nielsen, Regulation of aquaporin-2 in the kidney: A molecular mechanism of body-water homeostasis. Kidney Res Clin Pract, 2013. 32(3): p. 96-102. 5. Star, R.A., et al., Calcium and cyclic adenosine monophosphate as second messengers for vasopressin in the rat inner medullary collecting duct. Journal of Clinical Investigation, 1988. 81(6): p. 1879-1888. 6. Star, R.A., et al., Calcium and cyclic adenosine monophosphate as second messengers for vasopressin in the rat inner medullary collecting duct. J Clin Invest, 1988. 81(6): p. 1879-88. 7. Brown, D., et al., Phosphorylation events and the modulation of aquaporin 2 cell surface expression. Curr Opin Nephrol Hypertens, 2008. 17(5): p. 491-8. 8. Nielsen, S., et al., Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci U S A, 1995. 92(4): p. 1013-7. 9. Xie, L., et al., Quantitative analysis of aquaporin-2 phosphorylation. American Journal of Physiology - Renal Physiology, 2010. 298(4): p. F1018-F1023. 10. Lu, H.J., et al., The phosphorylation state of serine 256 is dominant over that of serine 261 in the regulation of AQP2 trafficking in renal epithelial cells. Am J Physiol Renal Physiol, 2008. 295(1): p. F290-4. 11. Hoffert, J.D., et al., Vasopressin-stimulated Increase in Phosphorylation at Ser(269) Potentiates Plasma Membrane Retention of Aquaporin-2. The Journal of Biological Chemistry, 2008. 283(36): p. 24617-24627. 12. Hoffert, J.D., et al., Vasopressin-stimulated increase in phosphorylation at Ser269 potentiates plasma membrane retention of aquaporin-2. J Biol Chem, 2008. 283(36): p. 24617-27. 13. Moeller, H.B., et al., Phosphorylation of aquaporin-2 regulates its endocytosis and protein-protein interactions. Proc Natl Acad Sci U S A, 2010. 107(1): p. 424-9. 14. Wang, P.J., et al., Vasopressin-induced serine 269 phosphorylation reduces Sipa111 (signal-induced proliferation-associated 1 like 1)-mediated aquaporin-2 endocytosis. J Biol Chem, 2017. 15. Barile, M., et al., Large scale protein identification in intracellular aquaporin-2 vesicles from renal inner medullary collecting duct. Mol Cell Proteomics, 2005. 4(8): p. 1095-106. 16. Procino, G., et al., Fluvastatin modulates renal water reabsorption in vivo through increased AQP2 availability at the apical plasma membrane of collecting duct cells. Pflugers Arch, 2011. 462(5): p. 753-66. 17. Nedvetsky, P.I., et al., A Role of myosin Vb and Rab11-FIP2 in the aquaporin-2 shuttle. Traffic, 2007. 8(2): p. 110-23. 18. Bucci, C., et al., Rab7: a key to lysosome biogenesis. Mol Biol Cell, 2000. 11(2): p. 467-80. 19. Dollerup, P., et al., Partial nephrogenic diabetes insipidus caused by a novel AQP2 variation impairing trafficking of the aquaporin-2 water channel. BMC Nephrol, 2015. 16: p. 217. 20. Lee, M.S., et al., Depletion of vacuolar protein sorting-associated protein 35 is associated with increased lysosomal degradation of aquaporin-2. Am J Physiol Renal Physiol, 2016. 311(6): p. F1294-F1307. 21. LeMaire, S.M., et al., Serine/threonine phosphatases and aquaporin-2 regulation in renal collecting duct. Am J Physiol Renal Physiol, 2017. 312(1): p. F84-F95. 22. Bradford, D., et al., Use of LC-MS/MS and Bayes' theorem to identify protein kinases that phosphorylate aquaporin-2 at Ser256. American Journal of Physiology-Cell Physiology, 2014. 307(2): p. C123-C139. 23. Uawithya, P., et al., Transcriptional profiling of native inner medullary collecting duct cells from rat kidney. Physiol Genomics, 2008. 32(2): p. 229-53. 24. Yang, C.R., et al., Deep proteomic profiling of vasopressin-sensitive collecting duct cells. II. Bioinformatic analysis of vasopressin signaling. Am J Physiol Cell Physiol, 2015. 309(12): p. C799-812. 25. Loo, C.S., et al., Quantitative apical membrane proteomics reveals vasopressin-induced actin dynamics in collecting duct cells. Proc Natl Acad Sci U S A, 2013. 110(42): p. 17119-24. 26. Bucci, C., et al., The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell, 1992. 70(5): p. 715-28. 27. Girard, E., et al., Rab7 is functionally required for selective cargo sorting at the early endosome. Traffic, 2014. 15(3): p. 309-326. 28. Ullrich, O., et al., Rab11 regulates recycling through the pericentriolar recycling endosome. J Cell Biol, 1996. 135(4): p. 913-24. 29. Goldenring, J.R., et al., Rab11 is an apically located small GTP-binding protein in epithelial tissues. Am J Physiol, 1996. 270(3 Pt 1): p. G515-25. 30. Bonifacino, J.S. and J.H. Hurley, Retromer. Curr Opin Cell Biol, 2008. 20(4): p. 427-36. 31. Burd, C. and P.J. Cullen, Retromer: a master conductor of endosome sorting. Cold Spring Harbor perspectives in biology, 2014. 6(2): p. a016774. 32. Sandoval, P.C., et al., Proteome-wide measurement of protein half-lives and translation rates in vasopressin-sensitive collecting duct cells. J Am Soc Nephrol, 2013. 24(11): p. 1793-805. 33. Moeller, H.B., et al., Phosphorylation and ubiquitylation are opposing processes that regulate endocytosis of the water channel aquaporin-2. J Cell Sci, 2014. 127(Pt 14): p. 3174-83. 34. Cheung, P.W., et al., Protein phosphatase 2C is responsible for VP-induced dephosphorylation of AQP2 serine 261. American Journal of Physiology-Renal Physiology, 2017. 313(2): p. F404-F413. 35. Hoffert, J.D., et al., Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc Natl Acad Sci U S A, 2006. 103(18): p. 7159-64. 36. Moeller, H.B., M.A. Knepper, and R.A. Fenton, Serine 269 phosphorylated aquaporin-2 is targeted to the apical membrane of collecting duct principal cells. Kidney Int, 2009. 75(3): p. 295-303. 37. Zerial, M. and H. McBride, Rab proteins as membrane organizers. Nat Rev Mol Cell Biol, 2001. 2(2): p. 107-17. 38. Stenmark, H., Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol, 2009. 10(8): p. 513-25. 39. Shin, H.-W., et al., An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway. The Journal of cell biology, 2005. 170(4): p. 607-618. 40. Lanzetti, L., et al., The Eps8 protein coordinates EGF receptor signalling through Rac and trafficking through Rab5. Nature, 2000. 408(6810): p. 374. 41. Semerdjieva, S., et al., Coordinated regulation of AP2 uncoating from clathrin-coated vesicles by rab5 and hRME-6. The Journal of cell biology, 2008. 183(3): p. 499-511. 42. Gorvel, J.-P., et al., rab5 controls early endosome fusion in vitro. Cell, 1991. 64(5): p. 915-925. 43. Jinek, M., et al., A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 2012: p. 1225829. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21837 | - |
| dc.description.abstract | 抗利尿激素 (vasopressin, AVP) 為一多胜肽賀爾蒙,負責調節腎臟集尿管對水分的再吸收,當腎臟集尿管的上皮細胞接收到AVP的刺激後,會使得第二型水通道蛋白 (Aquaporin-2, AQP2) 從細胞內囊泡被運送至細胞頂膜,藉而增加腎臟集尿管對水分的通透性,達到水分再吸收的目的。目前已知,AVP的刺激會促使AQP2上的第269號絲氨酸被磷酸化,並且發現,這些被磷酸化的AQP2幾乎都位在細胞頂膜上,而非細胞內。在先前的研究中,已知絲氨酸269的磷酸化化與AQP2的內吞作用有關,當絲氨酸269被磷酸化時,會抑制AQP2從細胞頂膜被內吞回細胞內,進而使得AQP2停留在細胞頂膜的時間增長;這是否暗示著:當AVP被移除後,絲氨酸269的去磷酸化會發生在AQP2從細胞頂膜被內吞回細胞的過程中。因此,我們想深入探討腎臟集尿管上皮細胞的AQP2絲氨酸269去磷酸化是發生於內吞過程中的何處。在膜蛋白的運輸過程裡,已知Rab5會參與在細胞膜的內吞作用中,因此,我們利用短髮夾核糖核酸 (shRNA) 來抑制Rab5的蛋白表現,在AVP被移除後,我們觀察到AQP2被困在靠近細胞頂膜的位置,無法回到細胞內,同時,亦可以觀察到絲氨酸269磷酸化的訊號,對比於控制組中,絲氨酸269被去磷酸化的AQP2,這樣的結果顯示絲氨酸269的去磷酸化是發生於Rab5所調控的內吞過程中。另外,我們利用shRNA來抑制細胞內負責囊泡運輸的蛋白—Rab7與Vps35,分別將AQP2滯留於早期內體或循環內體中,並觀察絲氨酸269的磷酸化與否。在實驗結果中我們發現,當AVP被移除後,滯留於胞內囊泡的AQP2已完成絲氨酸269的去磷酸化。說明AQP2絲氨酸269的去磷酸化不是發生在早期囊泡前往循環囊泡的運輸,而是發生於Rab5所調控的內吞過程中。 | zh_TW |
| dc.description.abstract | Vasopressin (AVP) is an antidiuretic peptide hormone that triggers aquaporin-2 (AQP2) trafficking to the apical membrane of the kidney collecting duct cells where AQP2 increases water reabsorption by the collecting ducts. The AVP-triggered apical AQP2 trafficking is mediated in part by phosphorylation of Ser269 at the COOH-terminus. S269 phosphorylation is elevated by more than 50 folds and is exclusively detected at the apical membrane in response to AVP. In the mouse collecting duct cell model (mpkCCD), phosphorylation-ablated mutant AQP2 traffics to the apical membrane like the wild type AQP2 in response to AVP. Phosphorylation-mimicking mutant AQP2 stays in the apical membrane in the mpkCCD cells even in the absence of AVP. Collectively, these observations indicate that S269 phosphorylation reduces AQP2 endocytosis by prolonging apical AQP2 retention. The above observations also imply that S269 is de-phosphorylated at the apical membrane before AQP2 endocytosis upon AVP removal. Using confocal immunofluorescence staining, we found that knockdown of the small GTPase Rab5 involved in protein endocytosis resulted in AQP2 accumulation in the sub-apical membrane where S269 remained phosphorylated upon AVP removal. These results indicate that S269 is de-phosphorylated during Rab5-mediated AQP2 endocytosis. In line with this, knockdown of Rab7 involved in late endosome formation or Vps35 involved in apical cargo targeting did not affect S269 de-phosphorylation upon AVP removal. Immunoprecipitation followed by immunoblotting showed results consistent with the confocal immunofluorescence staining results. We conclude that S269 is de-phosphorylated during Rab5-mediated AQP2 endocytosis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:49:04Z (GMT). No. of bitstreams: 1 ntu-107-R05442030-1.pdf: 3773876 bytes, checksum: e8fb066b0e48a1d10f7db639db808c96 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
中文摘要 ii Abstract iii Contents v Introduction 1 Materials 5 Methods 11 Results 23 Rab5 knockdown trapped AQP2 in the sub-apical region where AQP2 was phosphorylated at S269 in the absence of vasopressin 23 Rab7 knockdown resulted in AQP2 accumulation in the early endosomes 26 S269 was not phosphorylated in the Rab7 knockdown cells in the absence or presence of vasopressin 28 Rab11 knockdown did not affect S269 de-phosphorylation upon vasopressin withdrawal 30 Vps35 knockdown resulted in AQP2 accumulated in the recycling endosome 32 S269 was not phosphorylated in the Vps35 knockdown cells upon vasopressin withdrawal 34 Bayes’ theorem prioritized PPP1CA, PPP1CB, PPP1CC, PPP2CB, and PPM1G for S269 de-phosphorylation 36 The PP1 or PP2A catalytic subunit knockdown did not affect S269 de-phosphorylation upon vasopressin withdrawal 38 Discussion 40 Figures and Legends 44 Figure 1. Rab5 knockdown resulted in AQP2 accumulation at the sub-apical region where AQP2 was phosphorylated at S269 in the absence of vasopressin. 45 Figure 2. Rab7 knockdown did not affect AQP2 endocytosis and resulted in AQP2 accumulation in the early endosome upon dDAVP withdrawal. 48 Figure 3. Rab7 knockdown did not affect AQP2 endocytosis nor S269 de-phosphorylation upon vasopressin withdrawal. 50 Figure 4. Rab11 knockdown did not affect S269 de-phosphorylation upon vasopressin withdrawal. 53 Figure 5. Vps35 knockdown impairs AQP2 apical trafficking and resulted in accumulation of AQP2 in the recycle endosome upon dDAVP withdrawal. 56 Figure 6. Vps35 knockdown did not affect S269 de-phosphorylation upon vasopressin withdrawal. 58 Figure 7. Bayes’ analysis of protein phosphatase for S269 de-phosphorylation. 60 Figure 8. Knockdown of the catalytic subunit of protein phosphatase 1 or protein phosphatase 2A did not affect S269 de-phosphorylation upon vasopressin withdrawal. 63 References 64 | |
| dc.language.iso | en | |
| dc.title | 第二型水通道蛋白質絲氨酸269的去磷酸化發生在Rab5調控的內吞過程中 | zh_TW |
| dc.title | Aquaporin-2 S269 is de-phosphorylated during small GTPase Rab5-mediated endocytosis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林水龍,詹智強 | |
| dc.subject.keyword | 抗利尿激素,第二型水通道蛋白,絲氨酸269,去磷酸化,Rab5, | zh_TW |
| dc.subject.keyword | Vasopressin,Aquaporin-2,Rab5,Rab7,Vps35,Ser269 de-phosphorylation, | en |
| dc.relation.page | 67 | |
| dc.identifier.doi | 10.6342/NTU201804331 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-12-11 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 3.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
