請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21826
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳怡然 | |
dc.contributor.author | Yan-Ru Chen | en |
dc.contributor.author | 陳彥儒 | zh_TW |
dc.date.accessioned | 2021-06-08T03:48:34Z | - |
dc.date.copyright | 2019-01-15 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2019-01-04 | |
dc.identifier.citation | [1] N. Tesla, “Apparatus for transmitting electrical energy,” U.S. Patent
1119732, Dec. 1, 1914. [2] M. Kiani, U. M. Jow and M. Ghovanloo, 'Design and optimization of a 3-Coil inductive link for efficient wireless power transmission,' IEEE Transactions on Biomedical Circuits and Systems, vol. 5, no. 6, pp. 579-591, Dec. 2011. [3] J. O. Mur-Miranda et al., 'Wireless power transfer using weakly coupled magnetostatic resonators,' 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, 2010, pp. 4179-4186. [4] S. Y. R. Hui, W. Zhong and C. K. Lee, 'A critical review of recent progress in mid-range wireless power transfer,' IEEE Transactions on Power Electronics, vol. 29, no. 9, pp. 4500-4511, Sept. 2014. [5] S. Samanta, A. K. Rathore and D. J. Thrimawithana, 'Bidirectional current-fed half-bridge (C) (LC)–(LC) configuration for inductive wireless power transfer system,' IEEE Transactions on Industry Applications, vol. 53, no. 4, pp. 4053-4062, July-Aug. 2017. [6] S. Samanta and A. K. Rathore, 'A new current-fed CLC transmitter and LC receiver topology for inductive wireless power transfer application: analysis, design, and experimental results,' IEEE Transactions on Transportation Electrification, vol. 1, no. 4, pp. 357-368, Dec. 2015. [7] H. H. Wu, A. Gilchrist, K. D. Sealy and D. Bronson, 'A high efficiency 5 kW inductive charger for EVs using dual side control,' IEEE Transactions on Industrial Informatics, vol. 8, no. 3, pp. 585-595, Aug. 2012. [8] J. J. Casanova, Z. N. Low and J. Lin, 'Design and optimization of a class-E amplifier for a loosely coupled planar wireless power system,' IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 11, pp. 830-834, Nov. 2009. [9] S. Liu, M. Liu, M. Fu, C. Ma and X. Zhu, 'A high-efficiency class-E power amplifier with wide-range load in WPT systems,' 2015 IEEE Wireless Power Transfer Conference (WPTC), Boulder, CO, 2015, pp. 1-3. [10] S. Liu, M. Liu, S. Yang, C. Ma and X. Zhu, 'A novel design methodology for high-efficiency current-mode and voltage-mode class-E power amplifiers in wireless power transfer systems,' IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 4514-4523, June 2017. [11] M. Liu, Y. Qiao, S. Liu and C. Ma, 'Analysis and design of a robust class E^2 DC–DC converter for megahertz wireless power transfer,' IEEE Transactions on Power Electronics, vol. 32, no. 4, pp. 2835-2845, April 2017. [12] Z. N. Low, R. A. Chinga, R. Tseng and J. Lin, 'Design and test of a high-power high-efficiency loosely coupled planar wireless power transfer system,' IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1801-1812, May 2009. [13] J. M. Rivas, Y. Han, O. Leitermann, A. D. Sagneri and D. J. Perreault, 'A high-frequency resonant inverter topology with low-voltage stress,' IEEE Transactions on Power Electronics, vol. 23, no. 4, pp. 1759-1771, July 2008. [14] N. O. Sokal and A. D. Sokal, 'Class E-A new class of high-efficiency tuned single-ended switching power amplifiers,' IEEE Journal of Solid-State Circuits, vol. 10, no. 3, pp. 168-176, Jun 1975. [15] F. Raab, 'Idealized operation of the class E tuned power amplifier,' IEEE Transactions on Circuits and Systems, vol. 24, no. 12, pp. 725-735, December 1977. [16] A. Grebennikov N. Sokal M. Franco Switchmode RF and Microwave Power Amplifiers Oxford U.K.:Eselvier 2012. [17] STMicroelectronics, STP16NF06/STP16NF06FP datasheet, Sept. 2004 [Feb. 2007] [18] J. Ebert and M. Kazimierczuk, 'Class E high-efficiency tuned power oscillator,' IEEE Journal of Solid-State Circuits, vol. 16, no. 2, pp. 62-66, April 1981. [19] M. K. Kazimierczuk, V. G. Krizhanovski, J. V. Rassokhina and D. V. Chernov, 'Class-E MOSFET tuned power oscillator design procedure,' IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, no. 6, pp. 1138-1147, June 2005. [20] D. Ahn and S. Hong, 'Wireless power transmission with self-regulated output voltage for biomedical implant,' IEEE Transactions on Industrial Electronics, vol. 61, no. 5, pp. 2225-2235, May 2014. [21] Y. Kwon and D. Ahn, 'Self-oscillating current-fed inverter with low switching loss for wireless power transfer,' Electronics Letters, vol. 53, no. 14, pp. 949-951, 6 7 2017. [22] A. N. Laskovski and M. R. Yuce, 'Class-E oscillators as wireless power transmitters for biomedical implants,' 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010), Rome, 2010, pp. 1-5. [23] R. L. O. Pinto, R. M. Duarte, F. R. Sousa, I. Muller and V. J. Brusamarello, 'Efficiency modeling of class-E power oscillators for wireless energy transfer,' 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Minneapolis, MN, 2013, pp. 271-275. [24] AirFuel Resonant Wireless Power Transfer (WPT) System Baseline System Specification (BSS), AFA TS-0010-0 v4.00, May 03, 2017. [25] T. Inaba and H. Koizumi, 'Class E/F tuned power oscillator,' IEEE Transactions on Power Electronics, vol. 33, no. 2, pp. 1420-1427, Feb. 2018. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21826 | - |
dc.description.abstract | 近幾年來,隨著手持式、醫療以及工業裝置的迅速發展,人們對行動裝置的使用率越來越高,為了有更安全方便的充電方式,發展無線充電技術的重要性也逐漸增加。一般行動裝置常見的無線充電方式分為感應式與共振式。感應式利用兩線圈靠近時由磁場產生的互感進行能量傳輸,缺點為線圈距離需較近以及虛功造成額外的損耗;共振式則是將兩線圈以電容補償至相同共振頻率,消除虛部阻抗產生近似純電阻的負載,也可以達到較好的傳輸距離。共振式主要分成Qi及AirFuel Alliance兩個聯盟制訂規格,AirFuel Alliance使用ISM band中的6.78 MHz頻帶,其優點是距離及線圈擺放位置對傳輸效率的影響較低。
本論文實現的無線能量傳輸系統包含三部分,第一部分對兩共振耦合線圈進行分析,包含串聯-串聯共振線圈形式及串聯-並聯共振線圈形式。第二部分是使用E類功率放大器作為無線能量傳輸系統之傳輸端電路,並推導E類功率放大器公式及設計參數,使用串聯-並聯共振線圈傳輸能量,根據量測結果,於線圈距離2公分時E類功率放大器輸出功率約為1.89 W,效率可達83.66 %,線圈傳輸效率可以達到80.52 %,系統整體效率可達67.36 %。第三部分為減少無線能量傳輸端之電路複雜度,省去額外的訊號產生電路以及驅動電路,將E類功率放大器以回授方式做成功率震盪器,使用串聯-並聯共振線圈傳輸能量,根據量測結果,於線圈距離0.5公分時功率震盪器輸出功率約為2.22 W,效率可達73.38 %,線圈傳輸效率可以達到92.84 %,系統整體效率可達68.13 %。 | zh_TW |
dc.description.abstract | Due to the development of portable, medical and industrial devices, the usage of mobile devices is getting higher and higher. To charge safely, the technology of wireless power transfer is needed. The common wireless charging methods for mobile devices are inductive coupling and resonant coupling. The inductive coupling uses the mutual inductance generated by the magnetic field when the two coils are close. The disadvantages of inductive coupling are the short coil distance and additional loss caused by reactive power. The resonant coupling is to compensate the two coils to the same resonant frequency with capacitors. Eliminating the imaginary impedance to create a load close to pure resistance, and a good transmission distance can be achieved. The resonant coupling alliances include Qi and AirFuel Alliance, and the AirFuel Alliance uses the 6.78 MHz ISM band. The advantage is that the distance and coil placement have lower impact on transmission efficiency.
The wireless power transfer system implemented in the thesis is divided into three parts. The first part is the analysis of two coupling coils, including series-series coupling and series-parallel coupling. The second part is to use the Class E power amplifier to drive the coil of the wireless power transfer system, deriving the formula and design parameter for Class E power amplifier, and using series-parallel coupling to transmit power. According to measurement, the output power of the Class E power amplifier is about 1.89 W and efficiency is up to 83.66 %. The coil transmission efficiency is 80.52 %. The overall system efficiency is 67.36 %. The third part is to reduce the complexity of transmitter, eliminating the need for additional signal generator and driving circuits. The Class E power amplifier is made into a power oscillator by LC feedback, and using series-parallel coupling to transmit power. According to measurement, the output power of the power oscillator is about 2.22 W and efficiency is up to 73.38 % when the coil distance is 0.5 cm. The coil transmission efficiency is 92.84 %. The overall system efficiency is 68.13 %. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:48:34Z (GMT). No. of bitstreams: 1 ntu-107-R04943126-1.pdf: 3246366 bytes, checksum: 2022e190083d9c65fb73fc11cfcb2a63 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | Chapter 1 序論 1
1.1 研究背景與研究動機 1 1.2 文獻回顧 2 1.3 論文架構 13 Chapter 2 AirFuel Alliance規格介紹 14 2.1 AirFuel Alliance簡介 14 2.2 無線充電系統模型 14 Chapter 3 磁共振式線圈耦合分析 18 3.1 串聯-串聯共振耦合分析 18 3.2 串聯-並聯共振耦合分析 20 3.3 線圈量測 22 3.3.1 TX線圈 22 3.3.2 RX線圈 26 3.4 共振線圈耦合模擬 29 3.4.1 串聯-串聯共振線圈 29 3.4.2 串聯-並聯共振線圈 31 3.5 共振線圈耦合量測 33 3.5.1 串聯-串聯共振線圈 36 3.5.2 串聯-並聯共振線圈 38 Chapter 4 E類功率放大器 41 4.1 簡介 41 4.2 E類功率放大器分析 42 4.3 E類功率放大器設計與模擬 48 4.4 量測結果 61 Chapter 5 E類功率震盪器 76 5.1 簡介 76 5.2 理論介紹 76 5.2.1 串聯-並聯電路轉換 76 5.3 E類功率震盪器分析 78 5.4 E類功率震盪器設計與模擬 85 5.5 量測結果 97 Chapter 6 結論 111 參考文獻 115 | |
dc.language.iso | zh-TW | |
dc.title | 共振式無線能量傳輸系統之功率震盪器設計與實現 | zh_TW |
dc.title | Design and Implementation of Power Oscillator for
Resonance-based Wireless Power Transfer System | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉邦榮,邱弘緯,陳景然 | |
dc.subject.keyword | 無線充電系統,磁共振系統,E類功率放大器,E類功率震盪器, | zh_TW |
dc.subject.keyword | Wireless Power Transfer,Resonant Coupling,Class E Power Amplifier,Class E Power Oscillator, | en |
dc.relation.page | 117 | |
dc.identifier.doi | 10.6342/NTU201900002 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2019-01-04 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 3.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。