請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21801
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林俊宏(Chun-Hung Lin) | |
dc.contributor.author | Feng-Jen Hsieh | en |
dc.contributor.author | 謝豐任 | zh_TW |
dc.date.accessioned | 2021-06-08T03:47:26Z | - |
dc.date.copyright | 2019-02-14 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-01-28 | |
dc.identifier.citation | (1) Shirey, S. B.; Cartigny, P.; Frost, D. J.; Keshav, S.; Nestola, F.; Nimis, P.; Pearson, D. G.; Sobolev, N. V.; Walter, M. J. Diamonds and the geology of mantle carbon. Carbon in Earth 2013, 75, 355-421.
(2) Neves, A. J.; Nazaré, M. H.; Inspec; Institution of Electrical, E. Properties, growth and applications of diamond, IEE, London, 2010. (3) Fu, C. C.; Lee, H. Y.; Chen, K.; Lim, T. S.; Wu, H. Y.; Lin, P. K.; Wei, P. K.; Tsao, P. H.; Chang, H. C.; Fann, W. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. P Natl Acad Sci USA 2007, 104, 727-732. (4) Breeding, C. M.; Shigley, J. E. The “type” classification system of diamonds and its importance in gemology. Gems Gemology 2009, 45, 96-111. (5) Kaur, R.; Badea, I. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems. International journal of nanomedicine 2013, 8, 203-220. (6) Vaijayanthimala, V.; Tzeng, Y. K.; Chang, H. C.; Li, C. L. The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake. Nanotechnology 2009, 20, 425103-425111. (7) Hall, H. T. The synthesis of diamond. J. Chem. Educ. 1961, 38, 484-489. (8) Lowther, J. E. The form of different charge states of the vacancy in diamond. J. Phys. Chem. Solids 1984, 45, 127-131. (9) Davies, G. Charge states of the vacancy in diamond. Nature 1977, 269, 498-500. (10) Long-Jyun, S.; Chia-Yi, F.; Yu-Tang, C.; Kuan-Ming, C.; Yueh-Chung, Y.; Jui-Hung, H.; Huan-Cheng, C. Creation of high density ensembles of nitrogen-vacancy centers in nitrogen-rich type Ib nanodiamonds. Nanotechnology 2013, 24, 315702-315711. (11) Vaijayanthimala, V.; Cheng, P. Y.; Yeh, S. H.; Liu, K. K.; Hsiao, C. H.; Chao, J. I.; Chang, H. C. The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent. Biomaterials 2012, 33, 7794-7802. (12) Yu, S. J.; Kang, M. W.; Chang, H. C.; Chen, K. M.; Yu, Y. C. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J. Am. Chem. Soc. 2005, 127, 17604-17605. (13) Chang, Y. R.; Lee, H. Y.; Chen, K.; Chang, C. C.; Tsai, D. S.; Fu, C. C.; Lim, T. S.; Tzeng, Y. K.; Fang, C. Y.; Han, C. C.; Chang, H. C.; Fann, W. Mass production and dynamic imaging of fluorescent nanodiamonds. Nat. Nanotechnol. 2008, 3, 284-288. (14) Chen, L.-C.; Lloyd, W. R.; Chang, C.-W.; Sud, D.; Mycek, M.-A., Chapter 20 - Fluorescence Lifetime Imaging Microscopy for Quantitative Biological Imaging. In Methods in Cell Biology, Sluder, G.; Wolf, D. E., Eds. Academic Press: 2013; Vol. 114, pp 457-488. (15) Kuo, Y.; Hsu, T. Y.; Wu, Y. C.; Chang, H. C. Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo. Biomaterials 2013, 34, 8352-8360. (16) Wu, T. J.; Tzeng, Y. K.; Chang, W. W.; Cheng, C. A.; Kuo, Y.; Chien, C. H.; Chang, H. C.; Yu, J. Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds. Nat Nanotechnol 2013, 8, 682-689. (17) Kuo, Y.; Hsu, T.-Y.; Wu, Y.-C.; Hsu, J.-H.; Chang, H.-C. In Fluorescence lifetime imaging microscopy of nanodiamonds in vivo, Proceedings of the SPIE 2013; pp 863503-863508. (18) Su, L. J.; Wu, M. S.; Hui, Y. Y.; Chang, B. M.; Pan, L.; Hsu, P. C.; Chen, Y. T.; Ho, H. N.; Huang, Y. H.; Ling, T. Y.; Hsu, H. H.; Chang, H. C. Fluorescent nanodiamonds enable quantitative tracking of human mesenchymal stem cells in miniature pigs. Sci Rep-Uk 2017, 7, 45607-45617. (19) Bradac, C.; Gaebel, T.; Rabeau, J. R. Nitrogen‐Vacancy Color Centers in Diamond: Properties, Synthesis, and Applications. Optical Engineering of Diamond 2013, 143-175. (20) Sarkar, S. K.; Bumb, A.; Wu, X.; Sochacki, K. A.; Kellman, P.; Brechbiel, M. W.; Neuman, K. C. Wide-field in vivo background free imaging by selective magnetic modulation of nanodiamond fluorescence. Biomedical optics express 2014, 5, 1190-1202. (21) Chang, H.-C.; Hsiao, W. W.-W.; Su, M.-C. Fluorescent Nanodiamonds, Wiley, 2018. (22) Lin, H.-H.; Lee, H.-W.; Lin, R.-J.; Huang, C.-W.; Liao, Y.-C.; Chen, Y.-T.; Fang, J.-M.; Lee, T.-C.; Yu, A. L.; Chang, H.-C. Tracking and Finding Slow-Proliferating/Quiescent Cancer Stem Cells with Fluorescent Nanodiamonds. Small 2015, 11, 4394-4402. (23) Li, H. C.; Hsieh, F. J.; Chen, C. P.; Chang, M. Y.; Hsieh, P. C.; Chen, C. C.; Hung, S. U.; Wu, C. C.; Chang, H. C. The hemocompatibility of oxidized diamond nanocrystals for biomedical applications. Sci Rep 2013, 3, 3044. (24) Chang, C.-C.; Zhang, B.; Li, C.-Y.; Hsieh, C.-C.; Duclos, G.; Treussart, F.; Chang, H.-C. In Exploring cytoplasmic dynamics in zebrafish yolk cells by single particle tracking of fluorescent nanodiamonds, Advances in Photonics of Quantum Computing, Memory, and Communication V, San Francisco, California, February 13; San Francisco, California, 2012; pp 827205-827208. (25) Huang, L. C.; Chang, H. C. Adsorption and immobilization of cytochrome c on nanodiamonds. Langmuir 2004, 20, 5879-5884. (26) Kong, X. L.; Huang, L. C. L.; Hsu, C. M.; Chen, W. H.; Han, C. C.; Chang, H. C. High-Affinity Capture of Proteins by Diamond Nanoparticles for Mass Spectrometric Analysis. Anal. Chem. 2005, 77, 259-265. (27) Tzeng, Y. K.; Faklaris, O.; Chang, B. M.; Kuo, Y.; Hsu, J. H.; Chang, H. C. Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion. Angew. Chem. Int. Ed. Engl. 2011, 50, 2262-2265. (28) Epperla, C. P.; Mohan, N.; Chang, C. W.; Chen, C. C.; Chang, H. C. Nanodiamond-Mediated Intercellular Transport of Proteins through Membrane Tunneling Nanotubes. Small 2015, 11, 6097-6105. (29) Chang, B. M.; Lin, H. H.; Su, L. J.; Lin, W. D.; Lin, R. J.; Tzeng, Y. K.; Lee, R. T.; Lee, Y. C.; Yu, A. L.; Chang, H. C. Highly fuorescent nanodiamonds protein-functionalized for cell labeling and targeting. Adv. Funct. Mater. 2013, 23, 5737-5745. (30) Liu, W. L.; Yu, F. L.; Yang, J. B.; Xiang, B.; Xiao, P.; Wang, L. 3D Single-Molecule Imaging of Transmembrane Signaling by Targeting Nanodiamonds. Adv. Funct. Mater. 2016, 26, 365-375. (31) Wu, Y.; Ermakova, A.; Liu, W.; Pramanik, G.; Vu, T. M.; Kurz, A.; McGuinness, L.; Naydenov, B.; Hafner, S.; Reuter, R.; Wrachtrup, J.; Isoya, J.; Förtsch, C.; Barth, H.; Simmet, T.; Jelezko, F.; Weil, T. Programmable Biopolymers for Advancing Biomedical Applications of Fluorescent Nanodiamonds. Adv. Funct. Mater. 2015, 25, 6576-6585. (32) Cao, M.; Deng, X.; Su, S.; Zhang, F.; Xiao, X.; Hu, Q.; Fu, Y.; Yang, B. B.; Wu, Y.; Sheng, W.; Zeng, Y. Protamine sulfate–nanodiamond hybrid nanoparticles as a vector for MiR-203 restoration in esophageal carcinoma cells. Nanoscale 2013, 5, 12120-12125. (33) Liu, K.-K.; Qiu, W.-R.; Naveen Raj, E.; Liu, H.-F.; Huang, H.-S.; Lin, Y.-W.; Chang, C.-J.; Chen, T.-H.; Chen, C.; Chang, H.-C.; Hwang, J.-K.; Chao, J.-I. Ubiquitin-coated nanodiamonds bind to autophagy receptors for entry into the selective autophagy pathway. Autophagy 2017, 13, 187-200. (34) Elena, P.; Chih-Yuan, C.; Pei-Hua, C.; Jhih-Sian, T.; Yu-Hsin, H.; Chia-Liang, C. The interaction of the protein lysozyme with bacteria E. coli observed using nanodiamond labelling. Nanotechnology 2007, 18, 315102-315109. (35) Weng, M.-F.; Chiang, S.-Y.; Wang, N.-S.; Niu, H. Fluorescent nanodiamonds for specifically targeted bioimaging: Application to the interaction of transferrin with transferrin receptor. Diamond Relat. Mater. 2009, 18, 587-591. (36) Li, Y.-q.; Zhou, X.-p. J. D.; Materials, R. Transferrin-coupled fluorescence nanodiamonds as targeting intracellular transporters: An investigation of the uptake mechanism. Diamond Relat. Mater. 2010, 19, 1163-1167. (37) Ermakova, A.; Pramanik, G.; Cai, J.-M.; Algara-Siller, G.; Kaiser, U.; Weil, T.; Tzeng, Y.-K.; Chang, H.-C.; McGuinness, L.; Plenio, M. B. Detection of a few metallo-protein molecules using color centers in nanodiamonds. Nano Lett. 2013, 13, 3305-3309. (38) Pham, M. D.; Epperla, C. P.; Hsieh, C.-L.; Chang, W.; Chang, H.-C. Glycosaminoglycans-Specific Cell Targeting and Imaging Using Fluorescent Nanodiamonds Coated with Viral Envelope Proteins. Anal. Chem. 2017, 89, 6527-6534. (39) Genjo, T.; Sotoma, S.; Tanabe, R.; Igarashi, R.; Shirakawa, M. A Nanodiamond-peptide Bioconjugate for Fluorescence and ODMR Microscopy of a Single Actin Filament. Anal. Sci. 2016, 32, 1165-1170. (40) Chan, M. S.; Liu, L. S.; Leung, H. M.; Lo, P. K. Cancer-cell-specific mitochondria-targeted drug delivery by dual-ligand-functionalized nanodiamonds circumvent drug resistance. ACS applied materials & interfaces 2017, 9, 11780-11789. (41) Alhaddad, A.; Durieu, C.; Dantelle, G.; Le Cam, E.; Malvy, C.; Treussart, F.; Bertrand, J.-R. Influence of the internalization pathway on the efficacy of siRNA delivery by cationic fluorescent nanodiamonds in the Ewing sarcoma cell model. PloS one 2012, 7, e52207. (42) Alhaddad, A.; Adam, M. P.; Botsoa, J.; Dantelle, G.; Perruchas, S.; Gacoin, T.; Mansuy, C.; Lavielle, S.; Malvy, C.; Treussart, F.; Bertrand, J. R. Nanodiamond as a vector for siRNA delivery to Ewing sarcoma cells. Small 2011, 7, 3087-3095. (43) Petrakova, V.; Benson, V.; Buncek, M.; Fiserova, A.; Ledvina, M.; Stursa, J.; Cigler, P.; Nesladek, M. Imaging of transfection and intracellular release of intact, non-labeled DNA using fluorescent nanodiamonds. Nanoscale 2016, 8, 12002-12012. (44) Behr, J.-P. The proton sponge: a trick to enter cells the viruses did not exploit. CHIMIA International Journal for Chemistry 1997, 51, 34-36. (45) Dahoumane, S. A.; Nguyen, M. N.; Thorel, A.; Boudou, J. P.; Chehimi, M. M.; Mangeney, C. Protein-functionalized hairy diamond nanoparticles. Langmuir 2009, 25, 9633-9638. (46) Zhang, P.; Yang, J.; Li, W.; Wang, W.; Liu, C.; Griffith, M.; Liu, W. Cationic polymer brush grafted-nanodiamond via atom transfer radical polymerization for enhanced gene delivery and bioimaging. J. Mater. Chem. 2011, 21, 7755-7764. (47) Zhang, X. Y.; Fu, C. K.; Feng, L.; Ji, Y.; Tao, L.; Huang, Q.; Li, S. X.; Wei, Y. PEGylation and polyPEGylation of nanodiamond. Polymer 2012, 53, 3178-3184. (48) Zeng, G.; Liu, M.; Shi, K.; Heng, C.; Mao, L.; Wan, Q.; Huang, H.; Deng, F.; Zhang, X.; Wei, Y. J. A. S. S. Surface modification of nanodiamond through metal free atom transfer radical polymerization. Appl. Surf. Sci. 2016, 390, 710-717. (49) Huynh, V. T.; Pearson, S.; Noy, J.-M.; Abboud, A.; Utama, R. H.; Lu, H.; Stenzel, M. H. Nanodiamonds with surface grafted polymer chains as vehicles for cell imaging and cisplatin delivery: enhancement of cell toxicity by POEGMEMA coating. ACS Macro Letters 2013, 2, 246-250. (50) Shi, Y.; Liu, M.; Wang, K.; Huang, H.; Wan, Q.; Tao, L.; Fu, L.; Zhang, X.; Wei, Y. Direct surface PEGylation of nanodiamond via RAFT polymerization. Appl. Surf. Sci. 2015, 357, 2147-2153. (51) Zhao, L.; Takimoto, T.; Ito, M.; Kitagawa, N.; Kimura, T.; Komatsu, N. Chromatographic separation of highly soluble diamond nanoparticles prepared by polyglycerol grafting. Angew. Chem. Int. Ed. Engl. 2011, 50, 1388-1392. (52) Zhao, L.; Xu, Y.-H.; Akasaka, T.; Abe, S.; Komatsu, N.; Watari, F.; Chen, X. Polyglycerol-coated nanodiamond as a macrophage-evading platform for selective drug delivery in cancer cells. Biomaterials 2014, 35, 5393-5406. (53) Zhao, L.; Xu, Y.-H.; Qin, H.; Abe, S.; Akasaka, T.; Chano, T.; Watari, F.; Kimura, T.; Komatsu, N.; Chen, X. Platinum on Nanodiamond: A Promising Prodrug Conjugated with Stealth Polyglycerol, Targeting Peptide and Acid-Responsive Antitumor Drug. Adv. Funct. Mater. 2014, 24, 5348-5357. (54) Zhao, L.; Shiino, A.; Qin, H.; Kimura, T.; Komatsu, N. Synthesis, characterization, and magnetic resonance evaluation of polyglycerol-functionalized detonation nanodiamond conjugated with gadolinium (III) complex. Journal of nanoscience 2015, 15, 1076-1082. (55) Boudou, J. P.; David, M. O.; Joshi, V.; Eidi, H.; Curmi, P. A. Hyperbranched polyglycerol modified fluorescent nanodiamond for biomedical research. Diamond Relat. Mater. 2013, 38, 131-138. (56) Sotoma, S.; Igarashi, R.; Iimura, J.; Kumiya, Y.; Tochio, H.; Harada, Y.; Shirakawa, M. Suppression of Nonspecific Protein-Nanodiamond Adsorption Enabling Specific Targeting of Nanodiamonds to Biomolecules of Interest. Chem. Lett. 2015, 44, 354-356. (57) Sotoma, S.; Iimura, J.; Igarashi, R.; Hirosawa, K. M.; Ohnishi, H.; Mizukami, S.; Kikuchi, K.; Fujiwara, T. K.; Shirakawa, M.; Tochio, H. Selective labeling of proteins on living cell membranes using fluorescent nanodiamond probes. Nanomaterials (Basel) 2016, 6, 1-9. (58) Sotoma, S.; Shirakawa, M. Monodispersed colloidal solutions of Surface-modified detonation-synthesized nanodiamonds and their aggregation resistance. Chem. Lett. 2016, 45, 697-699. (59) Lee, J. W.; Lee, S.; Jang, S.; Han, K. Y.; Kim, Y.; Hyun, J.; Kim, S. K.; Lee, Y. Preparation of non-aggregated fluorescent nanodiamonds (FNDs) by non-covalent coating with a block copolymer and proteins for enhancement of intracellular uptake. Mol Biosyst 2013, 9, 1004-1011. (60) Bumb, A.; Sarkar, S. K.; Billington, N.; Brechbiel, M. W.; Neuman, K. C. Silica encapsulation of fluorescent nanodiamonds for colloidal stability and facile surface functionalization. J. Am. Chem. Soc. 2013, 135, 7815-7818. (61) von Haartman, E.; Jiang, H.; Khomich, A. A.; Zhang, J.; Burikov, S. A.; Dolenko, T. A.; Ruokolainen, J.; Gu, H.; Shenderova, O. A.; Vlasov, I. I.; Rosenholm, J. M. Core–shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery I: fabrication. Journal of Materials Chemistry B 2013, 1, 2358-2366. (62) Prabhakar, N.; Näreoja, T.; von Haartman, E.; Karaman, D. Ş.; Jiang, H.; Koho, S.; Dolenko, T. A.; Hänninen, P. E.; Vlasov, D. I.; Ralchenko, V. G. Core–shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery II: application. Nanoscale 2013, 5, 3713-3722. (63) Rehor, I.; Mackova, H.; Filippov, S. K.; Kucka, J.; Proks, V.; Slegerova, J.; Turner, S.; Van Tendeloo, G.; Ledvina, M.; Hruby, M. Fluorescent nanodiamonds with bioorthogonally reactive protein‐resistant polymeric coatings. ChemPlusChem 2014, 79, 21-24. (64) Hui, Y. Y.; Zhang, B.; Chang, Y. C.; Chang, C. C.; Chang, H. C.; Hsu, J. H.; Chang, K.; Chang, F. H. Two-photon fluorescence correlation spectroscopy of lipid-encapsulated fluorescent nanodiamonds in living cells. Opt. Express 2010, 18, 5896-5905. (65) Moore, L. K.; Chow, E. K.; Osawa, E.; Bishop, J. M.; Ho, D. Diamond-lipid hybrids enhance chemotherapeutic tolerance and mediate tumor regression. Adv. Mater. 2013, 25, 3532-3541. (66) Zhang, Z.; Niu, B.; Chen, J.; He, X.; Bao, X.; Zhu, J.; Yu, H.; Li, Y. The use of lipid-coated nanodiamond to improve bioavailability and efficacy of sorafenib in resisting metastasis of gastric cancer. Biomaterials 2014, 35, 4565-4572. (67) Presolski, S. I.; Hong, V. P.; Finn, M. G. Copper-Catalyzed Azide–Alkyne Click Chemistry for Bioconjugation, John Wiley & Sons, Inc., 2009. (68) Li, S.; Wang, L.; Yu, F.; Zhu, Z.; Shobaki, D.; Chen, H.; Wang, M.; Wang, J.; Qin, G.; Erasquin, U. J.; Ren, L.; Wang, Y.; Cai, C. Copper-catalyzed click reaction on/in live cells Chemical Science 2017, 8, 2107-2114. (69) Cheng, C. Y.; Hsieh, C. L. Background Estimation and Correction for High-Precision Localization Microscopy. Acs Photonics 2017, 4, 1730-1739. (70) Gregoria.G; Ryman, B. E. Liposomes as carriers of enzymes or drugs - New approach to treatment of storage diseases. Biochem. J. 1971, 124, P58. (71) Paszko, E.; Senge, M. O. Immunoliposomes. Curr. Med. Chem. 2012, 19, 5239-5277. (72) Barenholz, Y. Doxil(R)--the first FDA-approved nano-drug: lessons learned. J Control Release 2012, 160, 117-134. (73) Vitale, S. A.; Katz, J. L. Liquid Droplet Dispersions Formed by Homogeneous Liquid−Liquid Nucleation: “The Ouzo Effect”. Langmuir 2003, 19, 4105-4110. (74) Nicolas, J. Drug-Initiated Synthesis of Polymer Prodrugs: Combining Simplicity and Efficacy in Drug Delivery. Chem. Mater. 2016, 28, 1591-1606. (75) Beck-Broichsitter, M.; Nicolas, J.; Couvreur, P. Solvent selection causes remarkable shifts of the 'Ouzo region' for poly(lactide-co-glycolide) nanoparticles prepared by nanoprecipitation. Nanoscale 2015, 7, 9215-9221. (76) Sotoma, S.; Akagi, K.; Hosokawa, S.; Igarashi, R.; Tochio, H.; Harada, Y.; Shirakawa, M. Comprehensive and quantitative analysis for controlling the physical/chemical states and particle properties of nanodiamonds for biological applications. RSC Advances 2015, 5, 13818-13827. (77) Verwey, E. J. W.; Overbeek, J. T. G.; Overbeek, J. T. G. Theory of the stability of lyophobic colloids, Courier Corporation, 1999. (78) Senbanjo, L. T.; Chellaiah, M. A. CD44: A Multifunctional Cell Surface Adhesion Receptor Is a Regulator of Progression and Metastasis of Cancer Cells. Frontiers in Cell and Developmental Biology 2017, 5, 1-6. (79) Hong, V.; Steinmetz, N. F.; Manchester, M.; Finn, M. G. Labeling live cells by copper-catalyzed alkyne--azide click chemistry. Bioconjug Chem 2010, 21, 1912-1916. (80) Cañeque, T.; Müller, S.; Rodriguez, R. Visualizing biologically active small molecules in cells using click chemistry. Nature Reviews Chemistry 2018, 2, 202-215. (81) Sotoma, S.; Hsieh, F. J.; Chang, H. C. Single-Step Metal-Free Grafting of Cationic Polymer Brushes on Fluorescent Nanodiamonds. Materials (Basel) 2018, 11, 1479-1487. (82) Schüll, C.; Gieshoff, T.; Frey, H. One-step synthesis of multi-alkyne functional hyperbranched polyglycerols by copolymerization of glycidyl propargyl ether and glycidol. Polymer Chemistry 2013, 4, 4730-4736. (83) Claridge, T. D. High-resolution NMR techniques in organic chemistry, Elsevier, 2016. (84) Chang, C. K.; Wu, C. C.; Wang, Y. S.; Chang, H. C. Selective extraction and enrichment of multiphosphorylated peptides using polyarginine-coated diamond nanoparticles. Anal. Chem. 2008, 80, 3791-3797. (85) Muller-Reichert, T.; Verkade, P. Correlative Light and Electron MIcroscopy, Elsevier Science, 2012. (86) Timmermans, F. J.; Otto, C. Contributed review: Review of integrated correlative light and electron microscopy. Rev. Sci. Instrum. 2015, 86, 011501-011513. (87) de Boer, P.; Hoogenboom, J. P.; Giepmans, B. N. Correlated light and electron microscopy: ultrastructure lights up! Nat. Methods 2015, 12, 503-513. (88) Kociak, M.; Zagonel, L. F. Cathodoluminescence in the scanning transmission electron microscope. Ultramicroscopy 2017, 176, 112-131. (89) Kukulski, W.; Schorb, M.; Welsch, S.; Picco, A.; Kaksonen, M.; Briggs, J. A. Precise, correlated fluorescence microscopy and electron tomography of lowicryl sections using fluorescent fiducial markers. Methods Cell Biol 2012, 111, 235-257. (90) Johnson, E.; Seiradake, E.; Jones, E. Y.; Davis, I.; Grunewald, K.; Kaufmann, R. Correlative in-resin super-resolution and electron microscopy using standard fluorescent proteins. Sci Rep-Uk 2015, 5. (91) Perkovic, M.; Kunz, M.; Endesfelder, U.; Bunse, S.; Wigge, C.; Yu, Z.; Hodirnau, V. V.; Scheffer, M. P.; Seybert, A.; Malkusch, S.; Schuman, E. M.; Heilemann, M.; Frangakis, A. S. Correlative light- and electron microscopy with chemical tags. J Struct Biol 2014, 186, 205-213. (92) Hsiao, W. W.; Hui, Y. Y.; Tsai, P. C.; Chang, H. C. Fluorescent nanodiamond: a versatile tool for long-term cell tracking, super-resolution imaging, and nanoscale Temperature Sensing. Acc. Chem. Res. 2016, 49, 400-407. (93) Arroyo-Camejo, S.; Adam, M. P.; Besbes, M.; Hugonin, J. P.; Jacques, V.; Greffet, J. J.; Roch, J. F.; Hell, S. W.; Treussart, F. Stimulated emission depletion microscopy resolves individual nitrogen vacancy centers in diamond nanocrystals. ACS Nano 2013, 7, 10912-10919. (94) Chu, Z.; Zhang, S.; Zhang, B.; Zhang, C.; Fang, C. Y.; Rehor, I.; Cigler, P.; Chang, H. C.; Lin, G.; Liu, R.; Li, Q. Unambiguous observation of shape effects on cellular fate of nanoparticles. Sci Rep 2014, 4, 4495. (95) Nawa, Y.; Inami, W.; Lin, S.; Kawata, Y.; Terakawa, S.; Fang, C. Y.; Chang, H. C. Multi-Color Imaging of Fluorescent Nanodiamonds in Living HeLa Cells Using Direct Electron-Beam Excitation. Chemphyschem 2014, 15, 721-726. (96) Nagarajan, S.; Pioche-Durieu, C.; Tizei, L. H.; Fang, C. Y.; Bertrand, J. R.; Le Cam, E.; Chang, H. C.; Treussart, F.; Kociak, M. Simultaneous cathodoluminescence and electron microscopy cytometry of cellular vesicles labeled with fluorescent nanodiamonds. Nanoscale 2016, 8, 11588-11594. (97) Chang, C. W.; Sud, D.; Mycek, M. A. Fluorescence lifetime imaging microscopy. Methods Cell Biol 2007, 81, 495-524. (98) Sarkar, S. K.; Bumb, A.; Wu, X.; Sochacki, K. A.; Kellman, P.; Brechbiel, M. W.; Neuman, K. C. Wide-field in vivo background free imaging by selective magnetic modulation of nanodiamond fluorescence. Biomed Opt Express 2014, 5, 1190-202. (99) Kinoshita, T.; Mori, Y.; Hirano, K.; Sugimoto, S.; Okuda, K.; Matsumoto, S.; Namiki, T.; Ebihara, T.; Kawata, M.; Nishiyama, H.; Sato, M.; Suga, M.; Higashiyama, K.; Sonomoto, K.; Mizunoe, Y.; Nishihara, S.; Sato, C. Immuno-electron microscopy of primary cell cultures from genetically modified animals in liquid by atmospheric scanning electron microscopy. Microsc. Microanal. 2014, 20, 469-483. (100) Sato, C.; Kinoshita, T.; Memtily, N.; Sato, M.; Nishihara, S.; Yamazawa, T.; Sugimoto, S. Correlative light-electron microscopy in liquid using an inverted SEM (ASEM). Methods Cell Biol 2017, 140, 187-213. (101) Paul-Gilloteaux, P.; Heiligenstein, X.; Belle, M.; Domart, M.-C.; Larijani, B.; Collinson, L.; Raposo, G.; Salamero, J. eC-CLEM: flexible multidimensional registration software for correlative microscopies. Nat Meth 2017, 14, 102-103. (102) Romero-Brey, I.; Bartenschlager, R. Viral Infection at High Magnification: 3D Electron Microscopy Methods to Analyze the Architecture of Infected Cells. Viruses 2015, 7, 6316-6345. (103) Pusch, A.; Boeckenhoff, A.; Glaser, T.; Kaminski, T.; Kirfel, G.; Hans, M.; Steinfarz, B.; Swandulla, D.; Kubitscheck, U.; Gieselmann, V.; Brustle, O.; Kappler, J. CD44 and hyaluronan promote invasive growth of B35 neuroblastoma cells into the brain. Biochimica Et Biophysica Acta-Molecular Cell Research 2010, 1803, 261-274. (104) Beckman, E. M.; Brenner, M. B. MHC class I-like, class II-like and CD1 molecules: distinct roles in immunity. Immunol. Today 1995, 16, 349-352. (105) Takahashi, T.; Shiku, H. Cell surface antigens: invaluable landmarks reflecting the nature of cells. Cancer immunity 2012, 12, 2. (106) Várady, G.; Cserepes, J.; Németh, A.; Szabó, E.; Sarkadi, B. Cell surface membrane proteins as personalized biomarkers: where we stand and where we are headed. 2013, 7, 803-819. (107) Belov, L.; Zhou, J.; Christopherson, R. I. Cell surface markers in colorectal cancer prognosis. Int J Mol Sci 2010, 12, 78-113. (108) Dean, L., Blood group antigens are surface markers on the red blood cell membrane. In Blood groups and red cell antigens, National Center for Biotechnology Information: 2005; pp 1-6. (109) Delves, P. J., CD Antigens. In eLS, John Wiley & Sons, Ltd: 2016; pp 1-26. (110) Grimm, D.; Bauer, J.; Pietsch, J.; Infanger, M.; Eucker, J.; Eilles, C.; Schoenberger, J. Diagnostic and Therapeutic Use of Membrane Proteins in Cancer Cells. Curr. Med. Chem. 2011, 18, 176-190. (111) Bishop, G. A.; Hwang, J. Use of a cellular Elisa for the detection of cell-surface antigens. BioTechniques 1992, 12, 326-330. (112) Ravindranath, M. H.; Bauer, P. M.; Cornillez-Ty, C.; Garcia, J.; Morton, D. L. Quantitation of the density of cell surface carbohydrate antigens on cancer cells with a sensitive cell-suspension ELISA. J. Immunol. Methods 1996, 197, 51-67. (113) Lourenco, E. V.; Roque-Barreira, M. C. Immunoenzymatic quantitative analysis of antigens expressed on the cell surface (cell-ELISA). Methods Mol Biol 2010, 588, 301-309. (114) Kim, H.; Tsuruta, S.; Arakawa, H.; Osada, T.; Ikai, A. Quantitative analysis of the number of antigens immobilized on a glass surface by AFM. Ultramicroscopy 2004, 100, 203-210. (115) Tijssen, P. Practice and theory of enzyme immunoassays, Elsevier, 1985. (116) de la Rica, R.; Stevens, M. M. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol 2012, 7, 821-824. (117) Tang, D. P.; Cui, Y. L.; Chen, G. A. Nanoparticle-based immunoassays in the biomedical field. Analyst 2013, 138, 981-990. (118) Roth, K. A.; Brenner, J. W.; Selznick, L. A.; Gokden, M.; Lorenz, R. G. Enzyme-based antigen localization and quantitation in cell and tissue samples (Midwestern assay). J. Histochem. Cytochem. 1997, 45, 1629-1641. (119) Lu, H. C.; Peng, Y. C.; Chou, S. L.; Lo, J. I.; Cheng, B. M.; Chang, H. C. Far-UV excited luminescence of nitrogen-vacancy centers: Evidence for diamonds in space. Angew. Chem. Int. Ed. 2018, 56, 14469-14473. (120) Davis, K. A.; Abrams, B.; Iyer, S. B.; Hoffman, R. A.; Bishop, J. E. Determination of CD4 antigen density on cells: role of antibody valency, avidity, clones, and conjugation. Cytometry 1998, 33, 197-205. (121) Pannu, K. K.; Joe, E. T.; Iyer, S. B. Performance evaluation of QuantiBRITE phycoerythrin beads. Cytometry 2001, 45, 250-258. (122) Almen, M. S.; Nordstrom, K. J.; Fredriksson, R.; Schioth, H. B. Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol. 2009, 7, 50-63. (123) Niu, G.; Chen, X. Y. Why Integrin as a Primary Target for Imaging and Therapy. Theranostics 2011, 1, 30-47. (124) Skylaki, S.; Hilsenbeck, O.; Schroeder, T. Challenges in long-term imaging and quantification of single-cell dynamics. Nat. Biotechnol. 2016, 34, 1137-1144. (125) Giliberti, V.; Badioli, M.; Nucara, A.; Calvani, P.; Ritter, E.; Puskar, L.; Aziz, E. F.; Hegemann, P.; Schade, U.; Ortolani, M.; Baldassarre, L. Heterogeneity of the Transmembrane Protein Conformation in Purple Membranes Identified by Infrared Nanospectroscopy. Small 2017, 13, 1701181-1701189. (126) Sengupta, P.; Jovanovic-Talisman, T.; Skoko, D.; Renz, M.; Veatch, S. L.; Lippincott-Schwartz, J. Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat. Methods 2011, 8, 969-975. (127) Dean, K. M.; Palmer, A. E. Advances in fluorescence labeling strategies for dynamic cellular imaging. Nat. Chem. Biol. 2014, 10, 512-523. (128) Jin, D.; Xi, P.; Wang, B.; Zhang, L.; Enderlein, J.; van Oijen, A. M. Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat. Methods 2018, 15, 415-423. (129) Haziza, S.; Mohan, N.; Loe-Mie, Y.; Lepagnol-Bestel, A.-M.; Massou, S.; Adam, M.-P.; Le, X. L.; Viard, J.; Plancon, C.; Daudin, R.; Koebel, P.; Dorard, E.; Rose, C.; Hsieh, F.-J.; Wu, C.-C.; Potier, B.; Herault, Y.; Sala, C.; Corvin, A.; Allinquant, B.; Chang, H.-C.; Treussart, F.; Simonneau, M. Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain-disease-related genetic risk factors. Nature Nanotechnology 2016, 12, 322-328. (130) Felsenfeld, D. P.; Choquet, D.; Sheetz, M. P. Ligand binding regulates the directed movement of β1 integrins on fibroblasts. Nature 1996, 383, 438-440. (131) Yauch, R. L.; Felsenfeld, D. P.; Kraeft, S.-K.; Chen, L. B.; Sheetz, M. P.; Hemler, M. E. Mutational Evidence for Control of Cell Adhesion Through Integrin Diffusion/Clustering, Independent of Ligand Binding. J. Exp. Med. 1997, 186, 1347-1355. (132) Mahal, L. K.; Yarema, K. J.; Bertozzi, C. R. Engineering Chemical Reactivity on Cell Surfaces Through Oligosaccharide Biosynthesis. Science 1997, 276, 1125-1128. (133) De Franceschi, N.; Hamidi, H.; Alanko, J.; Sahgal, P.; Ivaska, J. Integrin traffic - the update. J. Cell Sci. 2015, 128, 839-852. (134) Leduc, C.; Si, S.; Gautier, J.; Soto-Ribeiro, M.; Wehrle-Haller, B.; Gautreau, A.; Giannone, G.; Cognet, L.; Lounis, B. A Highly Specific Gold Nanoprobe for Live-Cell Single-Molecule Imaging. Nano Lett. 2013, 13, 1489-1494. (135) Diggins, N. L.; Kang, H.; Weaver, A.; Webb, D. J. α5β1 integrin trafficking and Rac activation are regulated by APPL1 in a Rab5-dependent manner to inhibit cell migration. J. Cell Sci. 2018, 131, 1-18. (136) Wright, C. S. Structural comparison of the two distinct sugar binding sites in wheat germ agglutinin isolectin II. J. Mol. Biol. 1984, 178, 91-104. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21801 | - |
dc.description.abstract | 以氮-空缺(nitrogen-vacancy center, NV center)中心為發光中心的螢光奈米鑽石為碳原子組成的新穎材料。因具有獨特且穩定的螢光性及高度的生物相容性,其已被廣泛的運用為生物影像應用中重要的顯影材料之一。然而,因其易於在生理緩衝溶液系統中產生凝集以及缺乏辨識專一蛋白的能力,致其難以運用於專一膜蛋白的顯影。因此,本論文首先致力於於開發具有專辨識功能的螢光奈米鑽石,隨後將開發之功能化螢光奈米鑽石做為顯影試劑用以解決現有顯影技術之瓶頸。
此篇論文共開發了兩種修飾螢光奈米鑽石使其具專一辨識功能的方法。其一為脂肪包覆法(lipid encapsulation method),此方法具備簡單及快速兩優點且其用於專一辨識功能用的官能機團能隨其特殊需求而加至奈米鑽石表面上。另一種方法為炔化超支化聚合甘油酯接枝包覆法(alkyne modified hyperbranched polyglycerol method),此方法較前述方法耗時,但由於此方法以共價鍵結方式逐一將甘油酯覆蓋於奈米鑽石表面,因此在奈米鑽石表面所形成的修飾層較前述脂肪包覆所形成的修飾層較為穩定。但此二種方法都能有效的使螢光奈米鑽石在生理緩衝溶液中依能保有良好分散性且具有專一辨識生物分子的功能。 在成功改良螢光奈米鑽石後,本論文接著利用此改良後螢光奈米鑽石應用於標定、定量及顯影細胞表面之膜蛋白。首先,藉由螢光奈米鑽石之螢光不易受外在環境干擾的獨特特性,我們成功的將生物素修飾之脂肪包覆螢光奈米鑽石做為整合式光學電子顯微鏡(correlative light electron microscopy)之顯影試劑來定位細胞表面的膜蛋白。再者,利用氮-空缺中心的磁光特性,生物素修飾之脂肪包覆螢光奈米鑽石能成功地被用於高靈敏度及高準確的測量細胞表面抗原的數目。最後,我們成功地將炔化超支化聚合甘油酯接枝包覆之螢光奈米鑽石用於長時間且連續的觀測細胞表面膜蛋白的動態。此應用是藉由螢光奈米鑽石螢光永不滅的特性,因此在目前其他現有的螢光染劑中(如:螢光蛋白或量子點),很難找到能達成相同的目的的試劑。 總括來說,此論文成功的提供兩種改進螢光奈米鑽石增加其實用性(如:使其具有辨識功能)方法。螢光奈米鑽石在經過此改良後,能成功的標定細胞上膜蛋白做為顯影試劑供長時間顯影使用,並能用於簡化現有整合式光學電子顯微鏡在樣品製備中所遇到的難題。 | zh_TW |
dc.description.abstract | Fluorescent nanodiamonds (FNDs) containing nitrogen-vacancy (NV) defects as light emitters have been extensively used as contrast agents for bioimaging due to their superior optical properties, such as high photostability. Forming aggregates in biofluids and lacking specific targeting ability, however, have significantly impeded their applications in specific protein labelling and imaging.
In this thesis, two strategies were developed to modify and functionalize FNDs to overcome existing limitations. The first approach, lipid encapsulation method has the advantages of simple manipulation and time-effective. Desired functional groups can be added onto FND surface through minor changes in the lipid composition. Alkyne-modified hyperbranched polyglycerol (alkyne-HPG) grafting by ring opening reaction is the other approach for functionalization of FNDs. Although this approach has longer processing time, the coating layer is much more stable because of the formation of covalent bonds between the coating layer and particles. Both coatings endow FNDs with not only high dispersity in physiological medium but also specific targeting ability of cell membrane proteins. By combining the exclusive optical features (e.g., chemical inert), biotinylated lipid coated FNDs (bL-FNDs) successfully simplified the complicated protocol to localize CD44 antigens on cell surface by correlative light electron microscopy (CLEM). A thorough literature search reveal that FND is to date, the only carbon nanomaterial having the ability to act as a dual contrast agent for CLEM. Moreover, taking advantage of magneto-optical property of NV- centers, highly sensitive and accurate quantification of CD44 antigens on cell surface with 35 nm of bL-FNDs was accomplished. Finally, high temporal and spatial resolution of continuous long-term observation of integrins α5 was achieved with alkyne-HPGFNDs. The superb photostability (no photo-bleaching and -blinking) of FNDs allows for the detailed transportation route of integrins α5 to be studied through short- and long-term observation, which cannot be viewed by any other dye molecules or quantum dots. To sum up, two reliable surface functionalization methods for FNDs was successfully demonstrated in this thesis. These novel FNDs shorten the gap between light and electron microscopy and serve as a platform for continuous long-term imaging of membrane protein tracking with high temporal and spatial resolution. In the future, the applicability of other kinds of biohybrid FNDs (e.g., antibody modified HPGFNDs or L-FNDs) may be conducted to further simplify the protocol of FNDs for biolabeling. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:47:26Z (GMT). No. of bitstreams: 1 ntu-108-D03b46016-1.pdf: 33236896 bytes, checksum: 7e6e483084ddf48babe03fe8bca52db2 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | Verification Letter i
Acknowledgement ii 中文摘要 iii Abstract v Table of Contents vii List of Figures ix List of Tables xv List of Abbreviations xvi Chapter 1 Fluorescent Nanodiamond 1 1.1 Introduction 1 1.2 Classification of diamonds 2 1.3 Synthesis of diamonds 3 1.4 Nitrogen vacancy centers as light emitters in diamonds 4 1.5 Production of FND from ND 5 1.6 Optical characterization of FNDs 7 1.6.1 Photostability of FNDs 7 1.6.2 Fluorescence lifetime of FND 7 1.6.3 Magnetic field modulable fluorescence of FND 8 1.7 Biocompatibility of FNDs 10 1.8 Surface modification of FNDs and their biological applications 12 1.8.1 Protein 12 1.8.2 Peptides 14 1.8.3 Polymers 15 1.8.4 Silica 18 1.8.5 Lipid 18 1.9 Motivation of this thesis 20 Chapter 2 Experimental Section 38 2.1 FND production 38 2.2 Preparation of biotinylated lipid coated FND (bL-FND) 38 2.3 Preparation of alkyne-HPGFND and HPGFND 39 2.4 Characterization of FND particles 39 2.5 Cell culture and labeling 40 2.6 Quantification of cell antigens 41 2.7 Flow cytometry 42 2.8 Confocal fluorescence and epifluorescence microscopy 43 2.9 Scanning electron microscopy (SEM) 44 2.10 Transmission electron microscopy (TEM) 44 2.11 Inspection the targeting ability of alkyne-HPGFND to azides and quantification of alkyne groups on each FND particle 45 2.12 Protein sample preparation, enrichment and MALDI-TOF Mass spectrometry analysis 46 2.13 Cytotoxicity examination of FND particles 47 2.14 Azide-modified antibody preparation 47 2.15 Sialoglycoprotein labeling and integrin α5 targeting in living cells 48 2.16 Analysis of the dynamic of membrane proteins 49 Chapter 3 The development of lipid encapsulated FNDs (L-FNDs) and clickable hyperbranched Polyglycerol FNDs (alkyne-HPGFNDs) 51 3.1 Part I: Lipid encapsulated FNDs 51 3.1.1 Introduction 51 3.1.2 Result and discussion 53 3.2 Part II: Clickable Hyperbranched Polyglycerol FNDs 58 3.2.1 Introduction 58 3.2.2 Result and discussion 60 3.3 Discussion and Summary 63 Chapter 4 Lipid encapsulated FNDs as dual contrast agents for Correlative Light-Electron Microscopy 75 4.1 Introduction 75 4.2 Result and discussion 77 4.3 Summary 81 Chapter 5 Lipid encapsulated FND for Antigen Quantification on Cell Surface 86 5.1 Introduction 86 5.2 Results and discussion 88 5.2.1 Flow cytometry analysis of cell surface antigens 88 5.2.2 Quantification of cell surface antigens by magnetic modulated fluorescence 91 5.3 Summary 94 Chapter 6 Functionalized FND for Continuous Long-term Imaging of Cell Membrane Proteins 99 6.1 Introduction 99 6.2 Results and discussion 101 6.2.1 Bioorthogonal labelling of sialoglycoproteins in living cells 101 6.2.2 Long-term dynamic imaging and tracking of sialoglycoproteins 104 6.3 Summary 109 Chapter 7 Conclusion 120 References 123 Appendix 144 Curriculum Vitae 152 | |
dc.language.iso | en | |
dc.title | 功能化螢光奈米鑽石的開發及其在生物標定與影像之應用 | zh_TW |
dc.title | Surface Modification and Functionalization of Fluorescent Nanodiamonds for Membrane Protein Targeting and Imaging | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-1 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 張煥正(Huan-Cheng Chang) | |
dc.contributor.oralexamcommittee | 林俊成(Chun-Cheng Lin),吳志哲(Chih-Che Wu),余慈顏(Tsyr-Yan Yu) | |
dc.subject.keyword | 螢光奈米鑽石,表面修飾,細胞膜蛋白標定,長時間追蹤,生物影像,整合式光學電子顯微鏡, | zh_TW |
dc.subject.keyword | fluorescent nanodiamond,surface modification,membrane protein targeting,continuous long-term tracking,bioimaging,correlative light electron microscopy, | en |
dc.relation.page | 154 | |
dc.identifier.doi | 10.6342/NTU201900132 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2019-01-28 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科學研究所 | zh_TW |
顯示於系所單位: | 生化科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 32.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。