Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21787
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉深淵(Shen-Iuan Liu)
dc.contributor.authorCheng-Qi Huangen
dc.contributor.author黃承啟zh_TW
dc.date.accessioned2021-06-08T03:46:48Z-
dc.date.copyright2021-01-07
dc.date.issued2020
dc.date.submitted2020-12-29
dc.identifier.citation[1] C. Y. Wu, X. H. Qian, M. S. Cheng, Y. A. Liang, and W. M. Chen, “A 13.56 MHz 40 mW CMOS high-efficiency inductive link power supply utilizing on-chip delay-compensated voltage doubler rectifier and multiple LDOs for implantable medical devices,” IEEE J. Solid-State Circuits, vol. 49, no. 11, pp. 2397–2407, Nov. 2014.
[2] K. G. Moh, et al., “A fully integrated 6W wireless power receiver operating at 6.78MHz with magnetic resonance coupling,” in ISSCC, Feb. 2015, pp. 230–231.
[3] J. Pan, et al., “An inductively-coupled wireless power- transfer system that is immune to distance and load variations,” ISSCC, pp. 382-383, Feb 2017.
[4] C. Kim, et al., “A fully integrated 144MHz wireless-power-receiver-on-chip with an adaptive buck-boost regulating rectifier and low-loss h-tree signal distribution,” in Proc. Symp. VLSI Cir., pp. C94-C95, Jun. 2016.
[5] S. U. Shin, et al., “A 13.56MHz time-interleaved resonant voltage-mode wireless power receiver with isolated resonator and quasi-resonant boost converter for implantable systems,” in ISSCC, Feb. 2018, pp. 154–156.
[6] O. Lazaro and G. A. Rincón-Mora, “A nonresonant self-synchronizing inductively coupled 0.18-μm CMOS power receiver and charger,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 261–271, Mar. 2015.
[7] M. Choil, et al., “A resonant current-mode wireless power receiver and battery charger with −32 dBm sensitivity for implantable systems,” IEEE Journal of Solid-State Circuits, vol. 51, no. 12, pp. 2880–2892, Dec. 2016.
[8] M. Kiani, B. Lee, P. Yeon, and M. Ghovanloo, “A Q-modulation technique for efficient inductive power transmission,” IEEE Journal of Solid-State Circuits, vol. 50, no. 12, pp. 2839–2848, Dec. 2015.
[9] C. J. Kuo and S. I. Liu, “A 13.56MHz current-mode wireless power receiver with energy-investment capability', IEEE Transactions on Circuits and Systems II: Express Briefs, pp. 205-209, Feb. 2020.
[10] S. W. Hong, “A 13.56MHz current-mode wireless power and data receiver with efficient power extracting controller and energy-shift keying technique for loosely coupled implantable devices,” in ISSCC, Feb. 2020, pp. 486–488.
[11] H. Gougheri and M. Kiani, “Adaptive reconfigurable voltage/current-mode power management with self-regulation for extended-range inductive power transmission,” in ISSCC, Feb. 2017, pp. 374-375.
[12] H. Gougheri and M. Kiani, “Self-regulated reconfigurable voltage/current-mode inductive power management,” IEEE Journal of Solid-State Circuits, vol. 52, no. 11, pp. 3056–3070, Nov. 2017.
[13] H. Gougheri and M. Kiani, “A self-regulated voltage/current-mode integrated power management with seamless mode transition and extended input- voltage range,” in Proc. IEEE Custom Integr. Circuits Conf., Apr. 2018, pp. 1-4.
[14] Z. Xue, et al., “A 13.56 MHz, 94.1% Peak Efficiency CMOS Active Rectifier with Adaptive Delay Time Control for Wireless Power Transmission Systems,” IEEE Journal of Solid-State Circuits, vol. 54, no. 6, pp. 1744–1754, June 2019.
[15] https://productfinder.pulseeng.com/productSearch/W7001, W7001 Datasheet, Pulse Electronics, USA.
[16] R. J. Yang and S. I. Liu, 'A 40–550 MHz harmonic-free all-digital delay-locked loop using a variable SAR algorithm', IEEE Journal of Solid-State Circuits, vol. 42, no. 2, pp. 361-373, Feb. 2007.
[17] S. Kundu, B. Kim and Chris H. Kim, “A 0.2-1.45-GHz subsampling fractional -N digital MDLL with zero-offset aperture PD-based spur cancellation and in situ static phase offset detection,” IEEE Journal of Solid-State Circuits, vol. 52, no. 3, pp. 799–811, Mar. 2017.
[18] M. W. Kruiskamp and D. M. W. Leenaerts, “A CMOS peak detect sample and hold circuit,” IEEE Trans. Nucl. Science, vol. 41(1), pp295-298, Feb. 1994
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21787-
dc.description.abstract電壓型無線功率接收器通過使用耦合線圈,直接轉換無線功率到電池上。如果轉換的電壓高於電池電壓,則這種功率接收器具有較高的功率轉換效率。但是,當這個轉換電壓低於電池電壓,需要一個額外的升壓DC-DC轉換器來提高電壓,這就會使PCE下降。相反,電流型無線功率接收器在低輸入功率下,採用多次共振來累積能量,從而避免使用額外的DC-DC轉換器,從而提高PCE。但是,當輸入功率增加,這種功率接收器的連接損耗增加,從而使PCE下降。因此,為了擴展輸入功率範圍以及提高PCE,混合型無線功率接收器被提出,這種功率接收器結合了電流型以及電壓型的優點。
這篇論文的主題主要分為兩個部分,第一部分提出了一個具有自動控制脈衝寬度以及共振次數的13.56MHz電流模式無線功率接收器。此電路並不同於既有文獻,在保留其同樣的充電原理下,提出了一個新的零電壓偵測器,一個新的零電流偵測器,以及一個自適應調節共振次數控制器。這個零電壓偵測器使用相位偵測器以及數位控制延遲器來實現。這個零電流偵測器使用兩個不同大小的並聯電晶體以及數位控制延遲器來實現。這個自適應調節共振次數控制器使用峰值電壓偵測以及共振次數計數器來實現。
第二部分實現了一個具有自動控制脈衝寬度13.56MHz混合模式無線功率接收器。為了提高在高輸入功率情況下的功率轉換效率,在電流模式無線功率接收器的基礎上加入一個電壓模式的充電路徑。這種無線功率接收器稱為混合模式無線功率接收器。使用一個電流模式的時間控制器以及一個電壓模式的時間控制器分別控制電流模式充電以及電壓模式充電。
zh_TW
dc.description.abstractVoltage-mode receivers [1-3] are used to convert the wireless power to charge a battery directly by using the coupled coils. A high power conversation efficiency (PCE) is achieved if its converted voltage is larger than the battery one. When the converted voltage is less than the battery one, an additional step-up DC-DC converter will be required which may decrease the PCE. On the contrary, current-mode receivers [4-7] adopt the multiple resonance cycles to accumulate the energy for a low-input power without a step-up DC-DC converter which improves the PCE. However, when input power increases. The conduction loss of the current-mode receiver will be increased for a high input power. Therefore, to extend the input power range and improve the PCE, hybrid-mode receivers [8~10] are presented which combine the advantages of the current-mode and voltage-mode ones.
This thesis consists of two parts. The first part implements a 13.56MHz resonant current-mode wireless power receiver using an adaptive pulse width controller and resonant cycle controller to receive the different input power. A new zero voltage switching controller and a zero current switching controller are presented. The new zero voltage controller uses the phase detector and the digital controlled delay line to control the switching timing of the power MOSFETs. The new zero current controller uses the two different size power MOSFETs and the digital controlled delay line to control the switching timing of the power MOSFETs. An adaptive resonant cycle controller uses peak detector sample-and-hold and cycle counter to control resonant cycles.
The second part implements a 13.56MHz resonant hybrid-mode wireless power receiver using an adaptive pulse width controller is presented to receive the different input power. For improving PCE at high input power, a voltage-mode charging path is added in current-mode charging receiver. A current-mode timing controller and a voltage-mode timing controller control current-mode and voltage mode charging, respectively.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:46:48Z (GMT). No. of bitstreams: 1
U0001-2912202016331200.pdf: 3823288 bytes, checksum: 1f8e5a0078f48db1301c267cbee05dfc (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsTable of Contents
1. Introduction..…………………………………………………………. 1
1.1 Motivation ..…………………………………………………… 1
1.2 Overview………………………………………………………. 2
2. A 13.56MHz Current-Mode Wireless Power Receiver with Adaptive Pulse Width Control and Resonant Cycle .………………………….. 3
2.1 Motivation…………………………………………………….. 3
2.2 Operating Principles…………………………………………... 4
2.2.1 Delay Compensation………………………………...... 8
2.2.2 Voltage Drop Amplification…………………………... 10
2.3 Circuit Description..…………………………………………... 12
2.3.1 Timing Controller Clock Generator………………... 13
2.3.2 ZVS Controller ……………………………………….. 18
2.3.3 ZCS Controller ……………………………………….. 20
2.3.4 CC Controller ………………………………………… 22
2.4 Simulated Results……………………………………………... 25
3. A 13.56MHz Hybrid-Mode Wireless Power Receiver with Calibrated Conduction Time ……………………………………..……………… 32
3.1 Motivation…………………………………………………….. 32
3.2 Operating Principles………………………………………….. 34
3.2.1 Operation……………………………………………… 34
3.2.2 Resonant Mode and Voltage Mode..………………….. 37
3.3 Circuit Description..…………………………………………... 40
3.3.1 CM Timing Controller………………………………… 41
3.3.2 VM Timing Controller………………………………... 42
3.4 Simulated Results…………………………………………….. 45
4. Conclusion and Future Work……………………………………… 50
4.1 Conclusion…………………………………………………… 50
4.2 Future Work..………………………………………………… 51
Bibliography ..……………………………………………………………… 52
dc.language.isozh-TW
dc.title一個使用自適應調節導通時間來提高功率轉換率的13.56MHz混合模式無線功率接收器zh_TW
dc.titleA 13.56MHz Hybrid-Mode Wireless Power Receiver with Enhancing PCE Using Conduction Time Calibrationen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee李泰成(Tai-Cheng Lee),林宗賢(Tsung-Hsien Lin)
dc.subject.keyword無線功率轉換器,功率轉換效率,電壓模式,電流模式,混合模式,zh_TW
dc.subject.keywordwireless power converter,power conversion efficiency,voltage-mode,current-mode,Hybrid-mode,en
dc.relation.page53
dc.identifier.doi10.6342/NTU202004477
dc.rights.note未授權
dc.date.accepted2020-12-30
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2912202016331200.pdf
  未授權公開取用
3.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved