Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21772
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃榮南(Rong-Nan Huang)
dc.contributor.authorLing-Wei Wengen
dc.contributor.author翁淩維zh_TW
dc.date.accessioned2021-06-08T03:46:08Z-
dc.date.copyright2019-02-15
dc.date.issued2019
dc.date.submitted2019-02-12
dc.identifier.citation連日清。2004。臺灣蚊種檢索。藝軒圖書出版社。
楊達璿。2018。鹽類對埃及斑蚊和臺灣鋏蠓卵黑化之影響與耐旱之研究。國立臺灣大學昆蟲學系碩士論文。66頁。
Alef K. 1995. Enrichment, isolation and counting of soil microorganisms. In: Alef K, Nannipieri P, (eds). Methods in Applied Soil Microbiology and Biochemistry. Academic Press, London. 123-191.
Anas C, Bernard D, Michel B. 1996. Purification and characterization of prophenoloxidase from the haemolymph of Locusta migratoria. Arch Insect Biochem Physiol 32:225-235.
Asada N, Yokoyama G, Kawamoto N, Norioka S, Hatta T. 2003. Prophenol oxidase A3 in Drosophila melanogaster: activation and the PCR-based cDNA sequence. Biochem Genet 41:151-163.
Aspán A, Söderhäll K. 1991. Purification of prophenoloxidase from crayfish blood cells, and its activation by an endogenous serine proteinase. Insect Biochem. 21:363-373.
Attardo GM, Hansen IA, Raikhel AS. 2005. Nutritional regulation of vitellogenesis in mosquitoes: Implications for anautogeny. Insect Biochem Mol Biol 35:661-675.
Barbosa RM, Regis L, Vasconcelos R, Leal WS. 2010. Culex mosquitoes (Diptera: Culicidae) egg laying in traps loaded with Bacillus thuringiensis variety israelensis and baited with skatole. J Med Entomol 47:345-348.
Barbosa RMR, Regis LN. 2011. Monitoring temporal fluctuations of Culex quinquefasciatus using oviposition traps containing attractant and larvicide in an urban environment in Recife, Brazil. Mem Inst Oswaldo Cruz 106:451-455.
Bartholomay LC, Waterhouse RM, Mayhew GF, Campbell CL, Michel K, Zou Z, Ramirez JL, Das S, Alvarez K, Arensburger P, Bryant B, Chapman SB, Dong Y, Erickson SM, Karunaratne SH, Kokoza V, Kodira CD, Pignatelli P, Shin SW, Vanlandingham DL, Atkinson PW, Birren B, Christophides GK, Clem RJ, Hemingway J, Higgs S, Megy K, Ranson H, Zdobnov EM, Raikhel AS, Christensen BM, Dimopoulos G, Muskavitch MA. 2010. Pathogenomics of Culex quinquefasciatus and meta-analysis of infection responses to diverse pathogens. Science 330:88-90.
Beehler J, Lohr S, DeFoliart G. 1992. Factors influencing oviposition in Aedes triseriatus (Diptera: Culicidae). Great Lakes Entomol 25:259-264.
Bentley MD, Day JF. 1989. Chemical ecology and behavioral aspects of mosquito oviposition. Annu Rev Entomol 34:401-421.
Bhattacharya NC, Dey N. 1969. Preliminary laboratory study on the bionomics of Aedes aegypti Linnaeus and A. albopictus Skuse. Bull Calcutta Sch Trop Med 17:43-44.
Brandon MC, Pennington JE, Isoe J, Zamora J, Schillinger A-S, Miesfeld RL. 2008. TOR signaling is required for amino acid stimulation of early trypsin protein synthesis in the midgut of Aedes aegypti mosquitoes. Insect Biochem Mol Biol 38:916-922.
Briegel H. 2003. Physiological bases of mosquito ecology. J Vector Ecol 28:1-11.
Brown MR, Clark KD, Gulia M, Zhao Z, Garczynski SF, Crim JW, Suderman RJ, Strand MR. 2008. An insulin-like peptide regulates egg maturation and metabolism in the mosquito Aedes aegypti. Proc Natl Acad Sci USA 105:5716-5721.
Brown MR, Graf R, Swiderek KM, Fendley D, Stracker TH, Champagne DE, Lea AO. 1998. Identification of a steroidogenic neurohormone in female mosquitoes. J Biol Chem 273:3967-3971.
Cerenius L, Lee BL, Soderhall K. 2008. The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol 29:263-271.
Cerenius L, Soderhall K. 2004. The prophenoloxidase-activating system in invertebrates.
Immunol Rev 198:116-126.
Chen CC, Chen CS. 1995. Brugia pahangi: effects of melanization on the uptake of nutrients by microfilariae in vitro. Exp Parasitol 81:72-78.
Chen YH, Lee MF, Lan JL, Chen CS, Wang HL, Hwang GY, Wu CH. 2005. Hypersensitivity to Forcipomyia taiwana (biting midge): clinical analysis and identificati ion of major For t 1, For t 2 and For t 3 allergens. Allergy 60:1518-1523.
Christensen BM, Li J, Chen CC, Nappi AJ. 2005. Melanization immune responses in mosquito vectors. Trends Parasitol 21:192-199.
Christophers SR. 1960. Aedes aegypti (L.), the Yellow Fever Mosquito: Its Life History, Bionomics and Structure. Cambridge University Press, London. 739 pp.
Clifton ME, Noriega FG. 2011. Nutrient limitation results in juvenile hormone-mediated resorption of previtellogenic ovarian follicles in mosquitoes. J Insect Physiol 57:1274-1281.
Day JF. 2016. Mosquito oviposition behavior and vector control. Insects 7:65. doi:10.3390/insects7040065
Dhara A, Eum J-H, Robertson A, Gulia-Nuss M, Vogel KJ, Clark KD, Graf R, Brown MR, Strand MR. 2013. Ovary ecdysteroidogenic hormone functions independently of the insulin receptor in the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 43, 1100-1108. doi: 10.1016/j.ibmb.2013.09.004
Durrant HJ, Ratcliffe NA, Hipkin CR, Aspan A, Soderhall K. 1993. Purification of the pro-phenol oxidase enzyme from haemocytes of the cockroach Blaberus discoidalis. Biochem J 289:87-91.
Farnesi LC, Menna-Barreto RF, Martins AJ, Valle D, Rezende GL. 2015. Physical features and chitin content of eggs from the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus: Connection with distinct levels of resistance to desiccation. J Insect Physiol 83:43-52.
Farnesi LC, Vargas HCM, Valle D, Rezende GL. 2017. Darker eggs of mosquitoes resist more to dry conditions: Melanin enhances serosal cuticle contribution in egg resistance to desiccation in Aedes, Anopheles and Culex vectors. PLoS Negl Trop Dis 11:e0006063.
Faull KJ, Williams CR. 2016. Differentiation of Aedes aegypti and Aedes notoscriptus (Diptera: Culicidae) eggs using scanning electron microscopy. Arthropod Struct Dev 45:273-280.
Girard YA, Popov V, Wen J, Han V, Higgs S. 2005. Ultrastructural study of West Nile virus pathogenesis in Culex pipiens quinquefasciatus (Diptera: Culicidae). J Med Entomol 42:429-444.
Goltsev Y, Rezende GL, Vranizan K, Lanzaro G, Valle D, Levine M. 2009. Developmental and evolutionary basis for drought tolerance of the Anopheles gambiae embryo. J Dev Biol 330:462-470.
Gulia-Nuss M, Elliot A, Brown MR, Strand MR. 2015. Multiple factors contribute to anautogenous reproduction by the mosquito Aedes aegypti. J Insect Physiol 82:8-16.
Hajra A, Dutta S, Mondal NK. 2016. Mosquito larvicidal activity of cadmium nanoparticles synthesized from petal extracts of marigold (Tagetes sp.) and rose (Rosa sp.) flower. J Parasit Dis 40:1519-1527.
Harbach RE. 2018. Mosquito Taxonomic Inventory, http://mosquito-taxonomic-inventory.info/, accessed on 25日 10月 2018.
Hernández-Martínez S, Rivera-Perez C, Nouzova M, Noriega FG. 2015. Coordinated changes in JH biosynthesis and JH hemolymph titers in Aedes aegypti mosquitoes. J Insect Physiol 72:22-27.
Hillyer JF, Christensen BM. 2002. Characterization of hemocytes from the yellow fever mosquito, Aedes aegypti. Histochem Cell Biol 117:431-440.
Jacobs CGC, Rezende GL, Lamers GEM, van der Zee M. 2013. The extraembryonic serosa protects the insect egg against desiccation. Proc R Soc Lond B Biol Sci 280:20131082. doi:10.1098/rspb.2013.1082
Kim SR, Yao R, Han Q, Christensen BM, Li J. 2005. Identification and molecular characterization of a prophenoloxidase involved in Aedes aegypti chorion melanization. Insect Mol Biol 14:185-194.
Kliewer JW. 1961. Weight and hatchability of Aedes aegypti eggs (Diptera: Culicidae). Ann Entomol Soc Am 54:912-917.
Kramer WL, Mulla MS. 1979. Oviposition attractants and repellents of mosquitoes: Oviposition responses of Culex mosquitoes to organic infusions. Environ Entomol 8:1111-1117.
Kress A, Kuch U, Oehlmann J, Muller R. 2016. Effects of diapause and cold acclimation on egg ultrastructure: new insights into the cold hardiness mechanisms of the Asian tiger mosquito Aedes (Stegomyia) albopictus. J Vector Ecol 41:142-150.
Kumar VA, Ammani K, Jobina R, Subhaswaraj P, Siddhardha B. 2017. Photo-induced and phytomediated synthesis of silver nanoparticles using Derris trifoliata leaf extract and its larvicidal activity against Aedes aegypti. J Photochem Photobiol B 171:1-8.
Kwon TH, Lee SY, Lee JH, Choi JS, Kawabata S, Iwanaga S, Lee BL. 1997. Purification and characterization of prophenoloxidase from the hemolymph of coleopteran insect, Holotrichia diomphalia larvae. Mol Cells 7:90-97.
Li J. 1994. Egg chorion tanning in Aedes aegypti mosquito. Comp Biochem Physiol A Physiol 109:835-843.
Li J, Hodgeman BA, Christensen BM. 1996. Involvement of peroxidase in chorion hardening in Aedes aegypti. Insect Biochem Mol Biol 26:309-317.
Li J, Kim SR, Li J. 2004. Molecular characterization of a novel peroxidase involved in Aedes aegypti chorion protein crosslinking. Insect Biochem Mol Biol 34:1195-1203.
Li J, Tracy JW, Christensen BM. 1992. Phenol oxidase activity in hemolymph compartments of Aedes aegypti during melanotic encapsulation reactions against microfilariae. Dev Comp Immunol 16:41-48.
Li JS, Li J. 2006. Major chorion proteins and their crosslinking during chorion hardening in Aedes aegypti mosquitoes. Insect Biochem Mol Biol 36:954-964.
Liu WT, Tu WC, Lin CH, Yang UC, Chen CC. 2017. Involvement of cecropin B in the formation of the Aedes aegypti mosquito cuticle. Sci Rep 7:16395.
Luo YP. 2018. Establishing and maintaining colonies of Forcipomyia taiwana in the laboratory. J Vector Ecol 43:328-333.
Mello CF, Santos-Mallet JR, Tatila-Ferreira A, Alencar J. 2018. Comparing the egg ultrastructure of three Psorophora ferox (Diptera: Culicidae) populations. Braz J Biol 78:505-508.
Monnerat AT, Soares MJ, Lima JBP, Rosa-Freitas MG, Valle D. 1999. Anopheles albitarsis eggs: ultrastructural analysis of chorion layers after permeabilization. J Insect Physiol 45:915-922.
Murugan K, Dinesh D, Nataraj D, Subramaniam J, Amuthavalli P, Madhavan J, Rajasekar A, Rajan M, Thiruppathi KP, Kumar S, Higuchi A, Nicoletti M, Benelli G. 2018. Iron and iron oxide nanoparticles are highly toxic to Culex quinquefasciatus with little non-target effects on larvivorous fishes. Environ Sci Pollut Res Int 25:10504-10514.
Nappi A, Poirie M, Carton Y. 2009. The role of melanization and cytotoxic by-products in the cellular immune responses of Drosophila against parasitic wasps. Adv Parasitol 70:99-121.
Nappi AJ, Christensen BM. 2005. Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. Insect Biochem Mol Biol 35:443-459.
Navarro DMAF, De Oliveira PES, Potting RPJ, Brito AC, Fital SJF, Sant'Ana AEG. 2003. The potential attractant or repellent effects of different water types on oviposition in Aedes aegypti L. (Dipt., Culicidae). J Appl Entomol 127:46-50.
Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, Allen JE, Amon J, Arca B, Arensburger P, Artemov G, Assour LA, Basseri H, Berlin A, Birren BW, Blandin SA, Brockman AI, Burkot TR, Burt A, Chan CS, Chauve C, Chiu JC, Christensen M, Costantini C, Davidson VL, Deligianni E, Dottorini T, Dritsou V, Gabriel SB, Guelbeogo WM, Hall AB, Han MV, Hlaing T, Hughes DS, Jenkins AM, Jiang X, Jungreis I, Kakani EG, Kamali M, Kemppainen P, Kennedy RC, Kirmitzoglou IK, Koekemoer LL, Laban N, Langridge N, Lawniczak MK, Lirakis M, Lobo NF, Lowy E, MacCallum RM, Mao C, Maslen G, Mbogo C, McCarthy J, Michel K, Mitchell SN, Moore W, Murphy KA, Naumenko AN, Nolan T, Novoa EM, O'Loughlin S, Oringanje C, Oshaghi MA, Pakpour N, Papathanos PA, Peery AN, Povelones M, Prakash A, Price DP, Rajaraman A, Reimer LJ, Rinker DC, Rokas A, Russell TL, Sagnon N, Sharakhova MV, Shea T, Simao FA, Simard F, Slotman MA, Somboon P, Stegniy V, Struchiner CJ, Thomas GW, Tojo M, Topalis P, Tubio JM, Unger MF, Vontas J, Walton C, Wilding CS, Willis JH, Wu YC, Yan G, Zdobnov EM, Zhou X, Catteruccia F, Christophides GK, Collins FH, Cornman RS, Crisanti A, Donnelly MJ, Emrich SJ, Fontaine MC, Gelbart W, Hahn MW, Hansen IA, Howell PI, Kafatos FC, Kellis M, Lawson D, Louis C, Luckhart S, Muskavitch MA, Ribeiro JM, Riehle MA, Sharakhov IV, Tu Z, Zwiebel LJ, Besansky NJ. 2015. Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science 347:1258522.
Ong SQ, Jaal Z. 2015. Investigation of mosquito oviposition pheromone as lethal lure for the control of Aedes aegypti (L.) (Diptera: Culicidae). Parasit Vectors 8:28.
Petri WH, Wyman AR, Kafatos FC. 1976. Specific protein synthesis in cellular differentiation: III. The eggshell proteins of Drosophila melanogaster and their program of synthesis. Dev Biol 49:185-199.
Raikhel AS, Kokoza VA, Zhu J, Martin D, Wang SF, Li C, Sun G, Ahmed A, Dittmer N, Attardo G. 2002. Molecular biology of mosquito vitellogenesis: from basic studies to genetic engineering of antipathogen immunity. Insect Biochem Mol Biol 32:1275-1286.
Ramasamy R, Jude PJ, Veluppillai T, Eswaramohan T, Surendran SN. 2014. Biological differences between brackish and fresh water-derived Aedes aegypti from two locations in the jaffna peninsula of sri lanka and the implications for arboviral disease transmission. PLoS One 9:e104977.
Ramirez JL, Dunlap CA, Muturi EJ, Barletta ABF, Rooney AP. 2018. Entomopathogenic fungal infection leads to temporospatial modulation of the mosquito immune system. PLoS Negl Trop Dis 12:e0006433.
Readio J, Peck K, Meola R, Dahm KH. 1988. Corpus allatum activity (In vitro) in female Culex pipiens during adult life cycle. J Insect Physiol 34:131-135.
Reidenbach KR, Cook S, Bertone MA, Harbach RE, Wiegmann BM, Besansky NJ. 2009. Phylogenetic analysis and temporal diversification of mosquitoes (Diptera: Culicidae) based on nuclear genes and morphology. BMC Evol Biol 9:298.
Rezende GL, Martins AJ, Gentile C, Farnesi LC, Pelajo-Machado M, Peixoto AA, Valle D. 2008. Embryonic desiccation resistance in Aedes aegypti: presumptive role of the chitinized serosal cuticle. BMC Dev Biol 8:82.
Riehle MA, Fan Y, Cao C, Brown MR. 2006. Molecular characterization of insulin-like peptides in the yellow fever mosquito, Aedes aegypti: Expression, cellular localization, and phylogeny. Peptides 27:2547-2560.
Ritchie SA, Long S, Hart A, Webb CE, Russell RC. 2003. An adulticidal sticky ovitrap for sampling container-breeding mosquitoes. J Am Mosq Control Assoc 19:235-242.
Ritchie SA, Rapley LP, Benjamin S. 2010. Bacillus thuringiensis var. israelensis (Bti) provides residual control of Aedes aegypti in small containers. Am J Trop Med Hyg 82:1053-1059.
Roy SG, Hansen IA, Raikhel AS. 2007. Effect of insulin and 20-hydroxyecdysone in the fat body of the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 37:1317-1326.
Sahlen G. 1996. Eggshell ultrastructure in four mosquito genera (Diptera: Culicidae). J Am Mosq Control Assoc12:263-270.
Satoh D, Horii A, Ochiai M, Ashida M. 1999. Prophenoloxidase-activating enzyme of the silkworm, Bombyx mori. Purification, characterization, and cDNA cloning. J Biol Chem 274:7441-7453.
Schlaeger DA, Fuchs MS. 1974. Dopa decarboxylase activity in Aedes aegypti: a preadult profile and its subsequent correlation with ovarian development. Dev Biol 38:209-219.
Söderhäll K, Cerenius L. 1998. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol 10:23-28.
Sohal RS, Copeland E. 1966. Ultrastructural variations in the anal papillae of Aedes aegypti (L.) at different environmental salinities. J Insect Physiol 12:429-434.
Sugumaran M. 2002. Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects. Pigment Cell Res 15:2-9.
Suman DS, Shrivastava AR, Pant SC, Parashar BD. 2011. Differentiation of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) with egg surface morphology and morphometrics using scanning electron microscopy. Arthropod Struct Dev 40:479-483.
Suman DS, Shrivastava AR, Parashar BD, Pant SC, Agrawal OP, Prakash S. 2008. Scanning electron microscopic studies on egg surface morphology and morphometrics of Culex tritaeniorhynchus and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 104:173-176.
Suman DS, Shrivastava AR, Parashar BD, Pant SC, Agrawal OP, Prakash S. 2009. Variation in morphology and morphometrics of eggs of Culex quinquefasciatus mosquitoes from different ecological regions of India. J Vector Ecol 34:191-199.
Syed Z, Leal WS. 2009. Acute olfactory response of Culex mosquitoes to a human- and bird-derived attractant. Proc Natl Acad Sci USA 106:18803-18808.
Trougakos IP, Margaritis LH. 2002. Novel morphological and physiological aspects of insect eggs. In: Hilker M, Meiners T, (eds). Chemoecology of Insect Eggs and Egg Deposition. Blackwell, Berlin, Germany. 2-36.
Valencia MDP, Miller LH, Mazur P. 1996. Permeability of intact and dechorionated eggs of the Anopheles mosquito to water vapor and liquid water: A comparison with Drosophila. Cryobiology 33:142-148.
Valeria C, Fabio B, Patrizia R, Serena D, Giuseppe G. 2008. Building up the Drosophila eggshell: First of all the eggshell genes must be transcribed. Dev Dyn 237:2061-2072.
Valle D, Monnerat AT, Soares MJ, Rosa-Freitas MG, Pelajo-Machado M, Vale BS, Lenzi HL, Galler R, Lima JB. 1999. Mosquito embryos and eggs: polarity and terminology of chorionic layers. J Insect Physiol 45:701-708.
van der Zee M, Berns N, Roth S. 2005. Distinct functions of the Tribolium zerknullt genes in serosa specification and dorsal closure. Curr Biol 15:624-636.
Vargas HCM, Farnesi LC, Martins AJ, Valle D, Rezende GL. 2014. Serosal cuticle formation and distinct degrees of desiccation resistance in embryos of the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus. J Insect Physiol 62:54-60.
Vinogradova EB. 2007. Diapause in aquatic insects, with emphasis on mosquitoes. In: Alekseev VR, De Stasio BT, Gilbert JJ, (eds). Diapause in Aquatic Invertebrates: Theory and Human Use. Springer, Dordrecht, The Netherlands. 83-113.
Wang YH, Hu Y, Xing LS, Jiang H, Hu S-N, Raikhel AS, Zou Z. 2015. A critical role for CLSP2 in the modulation of antifungal immune response in mosquitoes. PLoS Pathog 11:e1004931.
Wang Y, Jiang H, Cheng Y, An C, Chu Y, Raikhel AS, Zou Z. 2017. Activation of Aedes aegypti prophenoloxidase‐3 and its role in the immune response against entomopathogenic fungi. Insect Mol Biol 26:552-563.
Waterhouse RM, Kriventseva EV, Meister S, Xi Z, Alvarez KS, Bartholomay LC, Barillas-Mury C, Bian G, Blandin S, Christensen BM, Dong Y, Jiang H, Kanost MR, Koutsos AC, Levashina EA, Li J, Ligoxygakis P, Maccallum RM, Mayhew GF, Mendes A, Michel K, Osta MA, Paskewitz S, Shin SW, Vlachou D, Wang L, Wei W, Zheng L, Zou Z, Severson DW, Raikhel AS, Kafatos FC, Dimopoulos G, .Zdobnov EM, Christophides GK. 2007. Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science 316:1738-1743.
Wood PJ. 1980. Specificity in the interaction of direct dyes with polysaccharides. Carbohydr Res 85:271-287.
Woods HA. 2010. Water loss and gas exchange by eggs of Manduca sexta: trading off costs and benefits. J Insect Physiol 56:480-487.
Wu X, Zhan X, Gan M, Zhang D, Zhang M, Zheng X, Wu Y, Li Z, He A. 2013. Laccase2 is required for sclerotization and pigmentation of Aedes albopictus eggshell. Parasitol Res 112:1929-1934.
Yee DA, Himel E, Resikind MH, Vamosi SM. 2014. Implications of saline concentrations for the performance and competitive interactions of the mosquitoes Aedes aegypti (Stegomyia aegypti) and Aedes albopictus (Stegomyia albopictus). Med Vet Entomol 28:60-69.
Zou Z, Shin SW, Alvarez KS, Bian G, Kokoza V, Raikhel AS. 2008. Mosquito RUNX4 in the immune regulation of PPO gene expression and its effect on avian malaria parasite infection. Proc Natl Acad Sci USA 105:18454-18459.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21772-
dc.description.abstract埃及斑蚊 (Aedes aegypti (Linnaeus))、熱帶家蚊 (Culex quinquefasciatus Say) 與臺灣鋏蠓 (Forcipomyia taiwana (Shiraki)) 皆為臺灣重要騷擾害蟲,除了吸血行為造成人體過敏或紅腫的情形,埃及斑蚊及熱帶家蚊還可傳播蚊媒疾病,造成人類健康危害,以往主要於幼蟲或成蟲期間進行防治,在卵期的探討甚少。前人研究指出雌蟲卵產於含氯化鈉基質時,無法順利黑化,而產於含硫酸鎂基質時,熱帶家蚊的蚊卵無法順利黑化,但埃及斑蚊及臺灣鋏蠓卵皆能夠黑化。本研究進一步探討氯化鈉及硫酸鎂水溶液處理後蟲卵外觀、卵殼表面顯微差異及發育過程中包覆胚胎,使卵具有抗乾燥能力 (egg resistance to desiccation) 的漿膜表皮 (serosal cuticle) 研究。也探討埃及斑蚊卵卵殼剖面構造、造成卵殼黑化的原酚氧化酶V (prophenoloxidase, proPO) 基因表現模式,及與漿膜表皮形成相關的幾丁質合成酶基因表現模式。結果顯示,鹽類水溶液處理後的蟲卵,無法黑化的組別,長度均有顯著的縮短,卵殼表面的突起比例也有增加情況或外卵黃膜區 (outer chorionic cell) 面積下降,顯示鹽類水溶液會造成無法黑化蟲卵卵殼皺縮。以幾丁質染劑確認漿膜表皮僅存在於自然產的黑化卵中。此外,埃及斑蚊的幾丁質合成酶表現與漿膜表皮的形成時間吻合。氯化鈉水溶液處理的埃及斑蚊卵殼可維持外卵黃膜 (exochorion) 及內卵黃膜 (endochorion) 的構造,而內卵黃膜有顯著的增厚 (0.4~0.5 μm)。以反轉錄聚合酶連鎖反應偵測卵的原酚氧化酶V基因表現,在蒸餾水、氯化鈉及硫酸鎂水溶液處理皆有表現,定量即時聚合酶連鎖反應結果顯示,硫酸鎂水溶液處理之自然產黑化蚊卵及氯化鈉水溶液處理之解剖未黑化蚊卵,兩者表現量有顯著下降,表示影響卵殼黑化的原因仍有待研究。zh_TW
dc.description.abstractAedes aegypti (Linnaeus), Culex quinquefasciatus Say and Forcipomyia taiwana (Shiraki) are important nuisance pests in Taiwan. All of them would make people allergic reaction through the bloodsucking and Ae. aegypti and Cx. quinquefasciatus also can spread diseases and harm human healthy. The control strategies always focus on larval and adult stage instead of the egg stage. Previous study suggested that eggs laid on the NaCl-containing medium are unable to melanize. When laid on MgSO4-containing medium, the eggs of Ae. aegypti and F. taiwana but not Cx. quinquefasciatus, are able to melanize. This study further investigates the effect of NaCl and MgSO4 solutions on the surface of eggs, structure of eggshell and serosal cuticle which contribute the eggs resistance to desiccation on Ae. aegypti, Cx. quinquefasciatus and F. taiwana. Our results showed that the unmelanization group of salt-treated eggs become shorter in length, outer chorionic cell decreased in area or tubercle increased in area ratio. These results indicate the egg become shrunk due to the failure of melanization. Moreover, the serosal cuticle only existed in the naturally laid and melanized eggs. Transection of NaCl-treated Ae. aegypti eggs showed that the eggshell had two intact layers (exochorion and endochorion) and the width of endochorion showed significantly wider (0.4-0.5 μm). The major prophenoloxidase gene (proPO5) responsible for egg melanization was expressed in all treatments, however, the expression level was significantly decreased in MgSO4-treated naturally laid eggs and NaCl-treated dissected eggs. The reason of salts influence egg chorion melanization is still unknown and deserves further investigation.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:46:08Z (GMT). No. of bitstreams: 1
ntu-108-R05632001-1.pdf: 4352814 bytes, checksum: 8be94e1cb10bcadb5f38b0b9b851dfd3 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 ix
表目錄 xi
壹、緒言 1
貳、往昔研究 5
2.1 卵殼的分層 5
2.2 黑化反應 (Melanization) 6
2.3 卵的形成及其黑化與硬化 7
2.4 卵的抗乾燥能力 9
2.5 蚊子產卵行為與誘引防治方法 11
2.6 電子顯微鏡 (Electron microscopy, EM) 技術 12
參、材料與方法 14
3.1 供試蟲源與飼養 14
3.2 埃及斑蚊卵之取得 14
3.2.1 自然產黑化卵與未黑化卵 15
3.2.2 解剖黑化卵與未黑化卵 15
3.3 熱帶家蚊卵之取得 15
3.3.1 自然產黑化卵與未黑化卵 15
3.3.2 解剖黑化卵與未黑化卵 16
3.4 臺灣鋏蠓卵之取得 16
3.4.1 自然產黑化卵與未黑化卵 16
3.4.2 解剖黑化卵與未黑化卵 16
3.5 卵之形態 16
3.5.1 光學顯微鏡 17
3.5.2 穿透式電子顯微鏡 18
3.5.3 掃描式電子顯微鏡觀察蟲卵表面形態 18
3.6 漿膜表皮 (serosal cuticle) 觀察 18
3.6.1 雷射共軛焦顯微鏡 18
3.7 埃及斑蚊黑化卵與未黑化卵原酚氧化酶V基因及幾丁質合成酶基因表現 19
3.7.1 總量 RNA 之萃取 19
3.7.2 RNA反轉錄 (Reverse transcription, RT) 至cDNA 20
3.7.3 聚合酶連鎖反應 (Polymerase chain reaction, PCR) 20
3.7.4 PCR產物分析 21
3.7.5 定量即時聚合酶連鎖反應 (Quantitative real time polymerase chain reaction, qRT-PCR ) 21
3.8 埃及斑蚊誘引產卵 22
3.8.1 誘引產卵溶液 22
3.8.2 誘引產卵實驗配置 22
3.9 數據統計分析 23
肆、結果 24
4.1 鹽類對埃及斑蚊卵之影響 24
4.1.1 鹽類對埃及斑蚊卵黑化影響 24
4.1.2 鹽類對埃及斑蚊卵構造之影響 24
4.1.3 鹽類對埃及斑蚊卵超微構造之影響 24
4.1.4 鹽類對埃及斑蚊卵外部形態之影響 25
4.2 鹽類對埃及斑蚊卵漿膜表皮 (serosal cuticle) 的影響 26
4.2.1 埃及斑蚊幾丁質合成酶 (Chitin Synthase , CHS1a) 的表現 26
4.3 埃及斑蚊原酚氧化酶V (prophenoloxidase V, proPO5) 的表現 27
4.4 鹽類對於熱帶家蚊卵之影響 28
4.4.1 鹽類對熱帶家蚊卵黑化影響 28
4.4.2 鹽類對熱帶家蚊卵外部形態之影響 28
4.4.3 鹽類對熱帶家蚊卵中漿膜表皮之影響 29
4.5 鹽類對於臺灣鋏蠓卵之影響 29
4.5.1 鹽類對臺灣鋏蠓卵黑化影響 29
4.5.2 鹽類對臺灣鋏蠓卵外部形態之影響 30
4.5.3 鹽類對臺灣鋏蠓卵中漿膜表皮之影響 31
4.6 埃及斑蚊產卵誘引 31
伍、討論 33
陸、參考文獻 41
柒、附錄 80
附錄一、蚊卵殼的分層以及不同蚊種的抗乾燥能力示意圖 80
附錄二、本研究使用之同步產卵裝置 81
附錄三、本研究使用之引子清單 82
附錄四、15% 漂白水浸泡處理自然產於蒸餾水之埃及斑蚊黑化卵 83
附錄五、7.5% 漂白水浸泡處理自然產於氯化鈉水溶液之埃及斑蚊未黑化卵 84
附錄六、15% 漂白水浸泡處理自然產於硫酸鎂水溶液之埃及斑蚊黑化卵 85
附錄七、30% 漂白水浸泡處理自然產於蒸餾水之熱帶家蚊黑化卵 86
附錄八、3.75% 漂白水浸泡處理自然產於氯化鈉水溶液之熱帶家蚊未黑化卵 87
附錄九、3.75% 漂白水浸泡處理自然產於硫酸鎂水溶液之熱帶家蚊未黑化卵 88
附錄十、15% 漂白水浸泡處理自然產於蒸餾水之臺灣鋏蠓黑化卵 89
附錄十一、7.5% 漂白水浸泡處理自然產於氯化鈉水溶液之臺灣鋏蠓粉紅卵 90
附錄十二、15% 漂白水浸泡處理自然產於硫酸鎂水溶液之臺灣鋏蠓黑化卵 91
dc.language.isozh-TW
dc.title鹽類對埃及斑蚊、熱帶家蚊及臺灣鋏蠓卵殼構造之影響zh_TW
dc.titleEffects of Salts on the Eggshell Structure of Aedes aegypti, Culex quinquefasciatus and Forcipomyia taiwanaen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee吳文哲(Wen-Jer Wu),許如君(Ju-Chun Hsu),蔡坤憲(Kun-Hsien Tsai),黃旌集(Chin-Gi Huang)
dc.subject.keyword埃及斑蚊,熱帶家蚊,臺灣鋏蠓,卵殼,漿膜表皮,原酚氧化?V,幾丁質合成?,zh_TW
dc.subject.keywordAedes aegypti,Culex quinquefasciatus,Forcipomyia taiwana,eggshell,serosal cuticle,prophenoloxidase,chitin synthase,en
dc.relation.page91
dc.identifier.doi10.6342/NTU201900288
dc.rights.note未授權
dc.date.accepted2019-02-12
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept昆蟲學研究所zh_TW
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
4.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved