請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21758完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃榮南(Rong-Nan Huang) | |
| dc.contributor.author | Tso-Min Hung | en |
| dc.contributor.author | 洪佐旻 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:45:31Z | - |
| dc.date.copyright | 2019-02-14 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-02-14 | |
| dc.identifier.citation | Ali MS, Ravikumar S, Beula JM. 2012. Bioactivity of seagrass against the dengue fever mosquito Aedes aegypti larvae. Asian Pac J Trop Bio 2:570-573.
Baek SH, Kang JH, Hwang YH, Ok KM, Kwak K, Chun HS. 2016. Detection of methomyl, a carbamate insecticide, in food matrices using terahertz time-domain spectroscopy. J Infrared Millim Te 37:486-497. Bartholomay LC, Waterhouse RM, Mayhew GF, Campbell CL, Michel K, Zou Z, Ramirez JL, Das S, Alvarez K, Arensburger P. 2010. Pathogenomics of Culex quinquefasciatus and meta-analysis of infection responses to diverse pathogens. Science 330:88-90. Beckage NE, Marion KM, Walton WE, Wirth MC, Tan FF. 2004. Comparative larvicidal toxicities of three ecdysone agonists on the mosquitoes Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae. Arch Insect Biochem 57:111-122. Becker N, Oo TT, Schork N. 2015. Metallic copper spray–a new control technique to combat invasive container-inhabiting mosquitoes. Parasite Vector 8:575. Bertie JE, Lan Z. 1996. Infrared intensities of liquids XX: The intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O (l) at 25 ℃ between 15,000 and 1 cm− 1. Appl Spectrosc 50:1047-1057. Brady OJ, Johansson MA, Guerra CA, Bhatt S, Golding N, Pigott DM, Delatte H, Grech MG, Leisnham PT, Maciel-de-Freitas R. 2013. Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasite Vector 6:351. Briegel H, Rezzonico L. 1985. Concentration of host blood protein during feeding by anopheline mosquitoes (Diptera: Culicidae). J Med Entomol 22:612-618. Campbell F, Sullivan W, Smith C. 1933. The relative toxicity of nicotine, anabasine, methyl anabasine, and lupinine for culicine mosquito larvae. J Econ Entomol 26:500-509. Chadee DD, Martinez R. 2000. Landing periodicity of Aedes aegypti with implications for dengue transmission in Trinidad, West Indies. J Vector Ecol 25:158-163. Chandra G, Bhattacharjee I, Chatterjee S, Ghosh A. 2008. Mosquito control by larvivorous fish. Indian J Med Res 127:13-27. Chen W-J, Dong C-F, Chiou L-Y, Chuang W-L. 2000. Potential role of Armigeres subalbatus (Diptera: Culicidae) in the transmission of Japanese encephalitis virus in the absence of rice culture on Liu-chiu islet, Taiwan. J Med Entomol 37:108-113. Chi H. 2009. Probit-MSChart: a computer program for probit analysis. http://140.120.197.173/Ecology/. Clark TM, Flis BJ, Remold SK. 2004. Differences in the effects of salinity on larval growth and developmental programs of a freshwater and a euryhaline mosquito species (Insecta: Diptera, Culicidae). J Exp Biol 207:2289-2295. Collins LE, Blackwell A. 2000. The biology of Toxorhynchites mosquitoes and their potential as biocontrol'agents. Biocontrol News Info 21:105N-116N. Cooke A. 1973. The effects of DDT, when used as a mosquito larvicide, on tadpoles of the frog Rana temporaria. Environ Pollut 5:259-273. Farnesi LC, Menna-Barreto RFS, Martins AJ, Valle D, Rezende GL. 2015. Physical features and chitin content of eggs from the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus: Connection with distinct levels of resistance to desiccation. J Insect Physiol 83:43-52. Finney D. 1978. Probit analysis. Cambridge University Press, Cambridge. Foster WA. 1995. Mosquito sugar feeding and reproductive energetics. Annu Rev Entomol 40:443-474. Georghiou GP, Wirth MC. 1997. Influence of exposure to single versus multiple toxins of Bacillus thuringiensis subsp. israelensis on development of resistance in the mosquito Culex quinquefasciatus (Diptera: Culicidae). Appl Environ Microb 63:1095-1101. Higa Y, Tsuda Y, Tuno N, Takagi M. 2000. Tempo-spatial variation in feeding activity and density of Aedes albopictus (Diptera: Culicidae) at peridomestic habitat in Nagasaki, Japan. Med Entomol Zool 51:205-209. Jayasree M, Panicker K. 1992. Larvivorous potential of some indigenous fishes of Sherthallai region with special reference to their efficacy in control of mansonioides. Indian J Med Res 95:195-199. Jentes ES, Poumerol G, Gershman MD, Hill DR, Lemarchand J, Lewis RF, Staples JE, Tomori O, Wilder-Smith A, Monath TP. 2011. The revised global yellow fever risk map and recommendations for vaccination, 2010: consensus of the Informal WHO Working Group on Geographic Risk for Yellow Fever. Lancet Infect Dis 11:622-632. Joy TK, Arik AJ, Corby-Harris V, Johnson AA, Riehle MA. 2010. The impact of larval and adult dietary restriction on lifespan, reproduction and growth in the mosquito Aedes aegypti. Exp Gerontol 45:685-690. Liang K-C. 1991. Historical review of malaria control program in Taiwan. Kaohsiung J Med Sci 7:271-277. Marten GG, Borjas G, Cush M, Fernandez E, Reid JW. 1994. Control of larval Aedes aegypti (Diptera: Culicidae) by cyclopoid copepods in peridomestic breeding containers. J Med Entomol 31:36-44. Merritt R, Dadd R, Walker E. 1992. Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. Annu Rev Entomol 37:349-374. Micieli MV, Marti G, García JJ. 2002. Laboratory evaluation of Mesocyclops annulatus (Wierzejski, 1892)(Copepoda: Cyclopidea) as a predator of container-breeding mosquitoes in Argentina. Memórias do Instituto Oswaldo Cruz 97:835-838. Mulla M, Darwazeh H, Dhillon M. 1980. New pyrethroids as mosquito larvicides and their effects on non-target organisms. Mosq News 40:6-13. Nakashima R, Kawamoto M, Miyazaki S, Onishi R, Furusaki K, Osaki M, Kirisawa R, Sakudo A, Onodera T. 2017. Evaluation of calcium hydrogen carbonate mesoscopic crystals as a disinfectant for influenza A viruses. J Vet Med Sci 79:939-942. Nitatpattana N, Apiwathnasorn C, Barbazan P, Leemingsawat S, Yoksan S, Gonzalez J. 2005. First isolation of Japanese encephalitis from Culex quinquefasciatus in Thailand. Se Asian J Trop Med 36:875. Peng Z, Beckett AN, Engler RJ, Hoffman DR, Ott NL, Simons FER. 2004. Immune responses to mosquito saliva in 14 individuals with acute systemic allergic reactions to mosquito bites. J Allergy Clin Immun 114:1189-1194. Platt KB, Linthicum KJ, Myint KS, Innis BL, Lerdthusnee K, Vaughn DW. 1997. Impact of dengue virus infection on feeding behavior of Aedes aegypti. Am J Trop Med Hyg 57:119-125. Ponrouch A, Frontera C, Bardé F, Palacín MR. 2016. Towards a calcium-based rechargeable battery. Nat Mater 15:169. Reiter P, Amador MA, Anderson RA, Clark GG. 1995. Dispersal of Aedes aegypti in an urban area after blood feeding as demonstrated by rubidium-marked eggs. Am J Trop Med Hyg 52:177-179. Rey JR, O Connell S, Suárez S, Menéndez Z, Lounibos LP, Byer G. 2004. Laboratory and field studies of Macrocyclops albidus (Crustacea: Copepoda) for biological control of mosquitoes in artificial containers in a subtropical environment. J Vector Ecol 29:124-134. Ribeiro J, Rossignol P, Spielman A. 1984. Role of mosquito saliva in blood vessel location. J Exp Biol 108:1-7. Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler D, Dean D. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol R 62:775-806. Siegel PH. 2004. Terahertz technology in biology and medicine. IEEE T Microw Theory 52:2438-2447. Sota T, Mogi M. 1992. Interspecific variation in desiccation survival time of Aedes (Stegomyia) mosquito eggs is correlated with habitat and egg size. J Oecologia 90:353-358. Spielman A. 2001. Structure and seasonality of nearctic Culex pipiens populations. Ann Ny Acad Sci 951:220-234. Stephenson R. 1982. Aquatic toxicology of cypermethrin. I. Acute toxicity to some freshwater fish and invertebrates in laboratory tests. Aquat Toxicol 2:175-185. Tonouchi M. 2007. Cutting-edge terahertz technology. Nat Photonics 1:97. Tseng W-C, Chen C-C, Chang C-C, Chu Y-H. 2009. Estimating the economic impacts of climate change on infectious diseases: a case study on dengue fever in Taiwan. Climatic Change 92:123-140. Turell M, Mores C, Dohm D, Komilov N, Paragas J, Lee J, Shermuhemedova D, Endy T, Kodirov A, Khodjaev S. 2006. Laboratory transmission of Japanese encephalitis and West Nile viruses by molestus form of Culex pipiens (Diptera: Culicidae) collected in Uzbekistan in 2004. J Med Entomol 43:296-300. Turell MJ, O’Guinn ML, Dohm DJ, Jones JW. 2001. Vector competence of North American mosquitoes (diptera: culicidae) for West Nile virus. J Med Entomol 38:130-134. Uttah EC, Wokem GN, Okonofua C. 2013. The abundance and biting patterns of Culex quinquefasciatus Say (Culicidae) in the coastal region of Nigeria. Int Scholarly Res No 2013. Uye S-i, Liang D. 1998. Copepods attain high abundance, biomass and production in the absence of large predators but suffer cannibalistic loss. J Marine Syst 15:495-501. Vega-Rúa A, Zouache K, Girod R, Failloux A-B, Lourenço-de-Oliveira R. 2014. High vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor of the spread of Chikungunya. J Virol 88:6294-6306. White N, Dondorp A, Faiz A, Mishra S, Hien T. 2012. New global estimates of malaria deaths. The Lancet 380:559-560. Whitehead SS, Blaney JE, Durbin AP, Murphy BR. 2007. Prospects for a dengue virus vaccine. Nat Rev Microbiol 5:518. Wu Y-C, Huang Y-S, Chien L-J, Lin T-L, Yueh Y-Y, Tseng W-L, Chang K-J, Wang G-R. 1999. The epidemiology of Japanese encephalitis on Taiwan during 1966-1997. Am J Trop Med Hyg 61:78-84. Yang H, Macoris MdLdG, Galvani K, Andrighetti M, Wanderley D. 2009. Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol Infect 137:1188-1202. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21758 | - |
| dc.description.abstract | 太赫茲活性水的原理是將鈣、鎂等植物營養鹽轉換成具有自我放電性的奈米結構微粒並溶於水中,因電磁輻射產生出波長介於1 mm~0.1 mm的太赫茲波、具有電解水分子的活性,可將自發性的水解離為氫離子和氫氧根,使其產生殺菌活性,亦能用於除臭、中和酸性等用途,也可發展為農業輔助製劑,發揮促進作物生長之作用,或是應用為殺蟲劑,殺死接觸到太赫茲活性水的害蟲,而不對作物或人體造成影響,可作為一種環境友善之防治資材。本研究試驗Santa Mineral公司之太赫茲活性水 (M717-RT Tera Hunter) 對三種常見病媒蚊 (埃及斑蚊(Aedes aegypti (Linnaeus))、白線斑蚊(Aedes albopictus (Skuse)) 及熱帶家蚊 (Culex quinquefasciatus (Say)) 幼期之毒性效應,包括卵之孵化率、幼蟲及蛹期毒性及羽化率影響,也評估太赫茲活性水對中劍水蚤 (Mesocyclops spp.) 之毒性及效用延續時間,以了解太赫茲活性水應用於病媒蚊幼期防治的潛力。試驗結果顯示太赫茲活性水不僅會降低熱帶家蚊卵的孵化率,也對三種病媒蚊幼蟲及蛹期均具有明顯之濃度相關毒性效應,原液稀釋3000倍以上的太赫茲活性水仍對三種病媒蚊的幼蟲和蛹期具有明顯毒性,且各蚊種在蛹期階段的死亡率表現略比幼蟲時期高,其中白線斑蚊的蛹期試驗更發現超過10000倍稀釋之太赫茲活性水仍可造成過半死亡率,未造成蛹體死亡的較低濃度下也會影響後續成蚊羽化成功的比率。太赫茲活性水雖對埃及斑蚊卵的孵化率無顯著影響,但仍具有對幼蟲及蛹期之防治潛力。然而太赫茲活性水也對病媒蚊的捕食性天敵中劍水蚤也有相當毒性,因此,在實際使用上須避免於進行中劍水蚤生物防治的水域使用。而稀釋的太赫茲活性水在經過2日後便會失去效用,能快速降解於環境中不造成長時間的殘留影響。 | zh_TW |
| dc.description.abstract | The terahertz radiation-activated water is a functional water in which plant derived minerals (calcium, magnesium, etc.) are transformed into electrically charged mesoscopic crystals. They could emit terahertz radiation between 1~0.1 mm wavelength due to electromagnetic radiation, so that electrolyte water molecule into hydrogen ion and hydroxide automatically. This thesis investigates the toxicity of terahertz radiation-activated water product (M717-RT Tera Hunter, Santa Mineral Co., Ltd.) to three common mosquitoes: Aedes aegypti (Linnaeus), Aedes albopictus (Skuse), and Culex quinquefasciatus (Say). The results showed terahertz radiation-activated water not only decreases the hatching rate of Cx. quinquefasciatus eggs, but also shows obviously concentration-dependent toxicity to larvae and pupae of all three mosquitoes. Moreover, the terahertz radiation-activated water was more toxic to pupal than larvae in each mosquito species, especially the Ae. albopictus pupae, in which half individual were dead after exposure to over 10000 times dilution of terahertz radiation-activated water. Though lower concentration of terahertz radiation-activated water were not lethal to the pupae, it still made influence to emergence rate. The terahertz radiation-activated water has no significant effect on Aedes aegypti eggs, nevertheless it could be potentially used for vector control to larvae and pupae. Since the terahertz radiation-activated water was also toxic to larvivorous predatory copepods (Mesocyclops spp.), it should be avoided to utilize in waters with bio-control of predatory copepods simultaneously. Diluted terahertz radiation-activated water will loss toxicity after 2 days, indicating it is degradable and eco-friendly in the environment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:45:31Z (GMT). No. of bitstreams: 1 ntu-108-R04632012-1.pdf: 3127117 bytes, checksum: bccbda8cfc8caa758d8e0385a2a4f070 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝………………………………………………………………...………………… i
中文摘要………………..…………………………………...….......…..……….…… ii 英文摘要……………………………………….……………......………………..…. iii 目錄………………………………………………….……………...…..……….…... iv 圖目錄……………………………………….…………….………...….…...……… vii 表目錄……………………………………….………..………….....……..……........ ix 壹、緒言………………………………….…………………………...……………... 1 一、病媒蚊類對環境衛生的危害及影響…..………………...………….…… 1 二、病媒蚊幼期的防治方法…..…………….………...……………....….…… 6 三、太赫茲活性水的原理與其性質…..……………..………..…….……..… 10 四、太赫茲活性水在農業上的應用…..………………....……..……….…… 12 貳、材料與方法………………………………………………….……..…...……... 14 一、太赫茲活性水與病媒蚊蟲飼養…..…………………..........……….…… 14 二、太赫茲活性水對病媒蚊卵期之影響……………….…………..….…… 16 三、太赫茲活性水對病媒蚊幼蟲期之影響….…………..………...……..… 17 四、太赫茲活性水對病媒蚊蛹期之影響…..…………………….…….…… 18 五、太赫茲活性水對病媒蚊羽化之影響…..………………….……….…… 19 六、太赫茲活性水對病媒蚊防治用天敵之影響……………….…..……… 20 七、太赫茲活性水的有效放置時間……………………………….....……… 21 八、太赫茲活性水對病媒蚊幼蟲體表的影響…………………..….…….… 21 九、統計分析…..………………………………………….…........……….…… 22 參、結果…………………………………………………….……….……………... 23 一、太赫茲活性水對病媒蚊卵期之影響……………………..…….….…… 23 二、太赫茲活性水對病媒蚊幼蟲期之影響….……….………..…..……..… 32 三、太赫茲活性水對病媒蚊蛹期之影響…..……….…………...….….…… 36 四、太赫茲活性水對病媒蚊羽化之影響…..……….……………....….…… 42 五、太赫茲活性水對病媒蚊防治用天敵之影響………………..….……… 52 六、太赫茲活性水的有效放置時間……………………………..…...……… 54 七、太赫茲活性水對病媒蚊幼蟲體表的影響…..…………...……..…….… 56 肆、討論…………………………………………..………………………………... 61 一、蚊蟲傳統防治方法的缺失及太赫茲活性水的展望……………...…... 61 二、太赫茲活性水應用於卵期防治之效用評估...…………….......….…… 61 三、太赫茲活性水應用於幼蟲期、蛹期防治之效用評估………….……. 62 四、太赫茲活性水對非目標生物的影響評估…..…….………….…....…… 64 五、太赫茲活性水的作用機制…..……………………………….….….…… 65 六、結論…..…….……………………………………………………….….…… 65 伍、參考文獻…………………………………………………….….……………... 67 附錄一、埃及斑蚊卵於不同濃度太赫茲活性水中之孵化率…………………..... 73 附錄二、埃及斑蚊卵於不同濃度太赫茲活性水中初孵化幼蟲活動率…………. 74 附錄三、白線斑蚊卵於不同濃度太赫茲活性水中之孵化率…………………..... 75 附錄四、白線斑蚊卵於不同濃度太赫茲活性水中初孵化幼蟲活動率…………. 76 附錄五、熱帶家蚊卵筏於不同濃度太赫茲活性水中之孵化率與初孵化幼蟲活動率…………………………………………………………………………..... 77 附錄六、埃及斑蚊三齡幼蟲於不同濃度太赫茲活性水中24小時內之麻痺率... 78 附錄七、白線斑蚊三齡幼蟲於不同濃度太赫茲活性水中24小時內之麻痺率... 79 附錄八、熱帶家蚊三齡幼蟲於不同濃度太赫茲活性水中24小時內之麻痺率... 80 附錄九、埃及斑蚊蛹於不同濃度太赫茲活性水中24小時內之麻痺率………... 81 附錄十、白線斑蚊蛹於不同濃度太赫茲活性水中24小時內之麻痺率………... 82 附錄十一、熱帶家蚊蛹於不同濃度太赫茲活性水中24小時內之麻痺率……... 83 附錄十二、埃及斑蚊蛹於不同濃度太赫茲活性水中24小時、48小時後之羽化存活率及羽化率………………………………………….…………….……... 84 附錄十三、熱帶家蚊蛹於不同濃度太赫茲活性水中24小時、48小時後之羽化存活率及羽化率………………………………………………………..……... 85 附錄十四、捕食性中劍水蚤 (Mesocyclops spp.) 於不同濃度太赫茲活性水中 24小時後之死亡率…………………………………….…………….………... 86 附錄十五、埃及斑蚊幼蟲於放置不同日數的4000倍稀釋太赫茲活性水中24小時內之麻痺率………………………..………………………………………... 87 附錄十六、M-717材料成分資料……………………………….….……………... 88 | |
| dc.language.iso | zh-TW | |
| dc.title | 太赫茲活性水對病媒蚊幼期的毒性 | zh_TW |
| dc.title | Toxicity of terahertz radiation-activated water toward immature stages of mosquito vectors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許如君(Ju-Chun Hsu),吳文哲(Wen-Jer Wu),蔡坤憲(Kun-Hsien Tsai),黃旌集(Chin-Gi Huang) | |
| dc.subject.keyword | 太赫茲波,埃及斑蚊,白線斑蚊,熱帶家蚊,非化學農藥, | zh_TW |
| dc.subject.keyword | Terahertz radiation,Aedes aegypti,Aedes albopictus,Culex quinquefasciatus,Non-chemical pesticides, | en |
| dc.relation.page | 88 | |
| dc.identifier.doi | 10.6342/NTU201900586 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2019-02-14 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 昆蟲學研究所 | zh_TW |
| 顯示於系所單位: | 昆蟲學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 3.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
