請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21755完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈湯龍 | |
| dc.contributor.author | Jeng-Lin Wu | en |
| dc.contributor.author | 吳政霖 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:45:24Z | - |
| dc.date.copyright | 2019-02-20 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-02-15 | |
| dc.identifier.citation | Ahn, S. Y., Kim, S. A., & Yun, H. K. (2015). Inhibition of Botrytis cinerea and accumulation of stilbene compounds by light-emitting diodes of grapevine leaves and differential expression of defense-related genes. European Journal of Plant Pathology, 143(4), 753-765. doi:10.1007/s10658-015-0725-5
Alsanius, B. W., Bergstrand, K.-J., Hartmann, R., Gharaie, S., Wohanka, W., Dorais, M., & Rosberg, A. K. (2017). Ornamental flowers in new light: Artificial lighting shapes the microbial phyllosphere community structure of greenhouse grown sunflowers (Helianthus annuus L.). Scientia Horticulturae, 216, 234-247. doi:https://doi.org/10.1016/j.scienta.2017.01.022 Amil-Ruiz, F., Blanco-Portales, R., Muñoz-Blanco, J., & Caballero, J. L. (2011). The Strawberry Plant Defense Mechanism: A Molecular Review. Plant and Cell Physiology, 52(11), 1873-1903. doi:10.1093/pcp/pcr136 Capobiango, N., Pinho, D., Zambolim, L., Liparini Pereira, O., & Lopes, U. (2015). Anthracnose on Strawberry Fruits Caused by Colletotrichum siamense in Brazil (Vol. 100), 859. Casado-Díaz, A., Encinas-Villarejo, S., Santos, B. d. l., Schilirò, E., Yubero-Serrano, E.-M., Amil-Ruíz, F., Caballero, J.-L. (2006). Analysis of strawberry genes differentially expressed in response to Colletotrichum infection. Physiologia Plantarum, 128(4), 633-650. doi:doi:10.1111/j.1399-3054.2006.00798.x Choi, H. G., Moon, B. Y., & Kang, N. J. (2015). Effects of LED light on the production of strawberry during cultivation in a plastic greenhouse and in a growth chamber. Scientia Horticulturae, 189, 22-31. doi:https://doi.org/10.1016/j.scienta.2015.03.022 Christou, A., Georgiadou, E. C., Filippou, P., Manganaris, G. A., & Fotopoulos, V. (2014). Establishment of a rapid, inexpensive protocol for extraction of high quality RNA from small amounts of strawberry plant tissues and other recalcitrant fruit crops. Gene, 537(1), 169-173. doi:https://doi.org/10.1016/j.gene.2013.11.066 Chung, W.-H., Chung, W.-C., Peng, M.-T., Yang, H.-R., & Huang, J.-W. (2010). Specific detection of benzimidazole resistance in Colletotrichum gloeosporioides from fruit crops by PCR-RFLP. New Biotechnology, 27(1), 17-24. doi:https://doi.org/10.1016/j.nbt.2009.10.004 Dai, T., Gupta, A., Murray, C. K., Vrahas, M. S., Tegos, G. P., & Hamblin, M. R. (2012). Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond? Drug Resist Updat, 15(4), 223-236. doi:10.1016/j.drup.2012.07.001 Daugovish, O., Bolda, M., Kaur, S., Mochizuki, M. J., Marcum, D., & Epstein, L. (2012). Drip Irrigation in California Strawberry Nurseries to Reduce the Incidence of Colletotrichum acutatum in Fruit Production. HortScience, 47(13), 368–373. doi:https://doi.org/10.21273/HORTSCI.47.3.368 De Lucca, A. J., Carter-Wientjes, C., Williams, K. A., & Bhatnagar, D. (2012). Blue light (470 nm) effectively inhibits bacterial and fungal growth. Lett Appl Microbiol, 55(6), 460-466. doi:10.1111/lam.12002 Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Foster, G. D. (2012). The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol, 13(4), 414-430. doi:10.1111/j.1364-3703.2011.00783.x Folta, K. M., & Childers, K. S. (2008). Light as a Growth Regulator: Controlling Plant Biology with Narrow-bandwidth Solid-state Lighting Systems. HortScience, 43(7), 1957-1964. Freeman, Horowitz, Sharon, Freeman, Horowitz, & Sharon. (2001). Pathogenic and non-pathogenic lifestyles in Colletotrichum acutatum from strawberry and other plants. Phytopathology, 91, 986-992. Freeman, S. (2008). Management, Survival Strategies, and Host Range of Colletotrichum acutatum on Strawberry (Vol. 43), 66–68. Friedl, M. A., Schmoll, M., Kubicek, C. P., & Druzhinina, I. S. (2008). Photostimulation of Hypocrea atroviridis growth occurs due to a cross-talk of carbon metabolism, blue light receptors and response to oxidative stress. Microbiology, 154(Pt 4), 1229-1241. doi:10.1099/mic.0.2007/014175-0 Garrido, C., Carbú, M., Fernández-Acero, F. J., Boonham, N., Colyer, A., Cantoral, J. M., & Budge, G. (2009). Development of protocols for detection of Colletotrichum acutatum and monitoring of strawberry anthracnose using real-time PCR. Plant Pathology, 58(1), 43-51. doi:doi:10.1111/j.1365-3059.2008.01933.x Goins, G. D., Yorio, N. C., Sanwo, M. M., & Brown, C. S. (1997). Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. J Exp Bot, 48(312), 1407-1413. Gupta, D., Khairul Kabir, M., Hassan, O., Sabir, A. A., Mahmud, N., Surovy, M., Islam, T. (2018). First Report of Anthracnose Crown Rot of Strawberry Caused by Colletotrichum siamense in Rajshahi District of Bangladesh. Harding, R. W., & Turner, R. V. (1981). Photoregulation of the Carotenoid Biosynthetic Pathway in Albino and White Collar Mutants of Neurospora crassa. Plant Physiology, 68(3), 745-749. doi:10.1104/pp.68.3.745 Hevia, M. A., Canessa, P., Müller-Esparza, H., & Larrondo, L. F. (2015). A circadian oscillator in the fungus <em>Botrytis cinerea</em> regulates virulence when infecting <em>Arabidopsis thaliana</em>. Proceedings of the National Academy of Sciences, 112(28), 8744-8749. doi:10.1073/pnas.1508432112 Hidaka, K., Dan, K., Imamura, H., Miyoshi, Y., Takayama, T., Sameshima, K., Kitano, M. (2013). Investigation of Supplemental Lighting with Different Light Source for High Yield of Strawberry. IFAC Proceedings Volumes, 46(4), 115-119. doi:https://doi.org/10.3182/20130327-3-JP-3017.00028 Hopkins, W. G., & Hüner, N. P. A. (2008). Introduction to plant physiology: Wiley. Islam, S. Z., Babadoost, M., Bekal, S., & Lambert, K. (2008). Red Light-induced Systemic Disease Resistance against Root-knot Nematode Meloidogyne javanica and Pseudomonas syringae pv. tomato DC 3000. Journal of Phytopathology, 708-714. doi:doi:10.1111/j.1439-0434.2008.01435.x Janisiewicz, W. J., Takeda, F., Glenn, D. M., Camp, M. J., & Jurick, W. M., 2nd. (2016). Dark Period Following UV-C Treatment Enhances Killing of Botrytis cinerea Conidia and Controls Gray Mold of Strawberries. Phytopathology, 106(4), 386-394. doi:10.1094/phyto-09-15-0240-r Khanam, N. N., Ueno, M., Kihara, J., Honda, Y., & Arase, S. (2005). Suppression of red light-induced resistance in broad beans to Botrytis cinerea by salicylic acid. Physiological and Molecular Plant Pathology, 66(1), 20-29. doi:https://doi.org/10.1016/j.pmpp.2005.03.006 Kim, H. H., Wheeler, R. M., Sager, J. C., Yorio, N. C., & Goins, G. D. (2005). Light-emitting diodes as an illumination source for plants: a review of research at Kennedy Space Center. Habitation (Elmsford), 10(2), 71-78. Kim, S.-J., Hahn, E.-J., Heo, J.-W., & Paek, K.-Y. (2004). Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Scientia Horticulturae, 101(1), 143-151. doi:https://doi.org/10.1016/j.scienta.2003.10.003 Leandro, L.F.S., Gleason, M.L., Nutter, F. W., Leandro, L.F.S., Gleason, M.L., & Nutter, F. W. (2001). Germination and sporulation of Colletotrichum acutatum on symptomless strawberry leaves. Phytopathology, 91, 659-664. Liu, X., Zhou, J. X., Dou, H., & Kuang, R. P. (2014). Phototactic behaviour of Pachyneuron aphidis (Hymenoptera: Pteromalidae) – hyperparasitoid of Myzus persicae (Hemiptera: Aphidiae) AU - Chen, Z. Biocontrol Science and Technology, 24(12), 1469-1480. doi:10.1080/09583157.2014.945901 Sjulin, M., (2008). Special Problems in Nursery Propagation of Day-neutral Strawberry Cultivars Susceptible to Colletotrichum acutatum (Vol. 43). 78–80. Martín, M. P., & García-Figueres, F. (1999). Colletotrichum acutatum and C. gloeosporioides Cause Anthracnose on Olives. European Journal of Plant Pathology, 105(8), 733-741. doi:10.1023/a:1008785703330 Mertely, J., Forcelini, B., & A Peres, N. (2018). Anthracnose Fruit Rot of Strawberry. Nunes, C. F., Ferreira, J. L., Fernandes, M. C. N., Breves, S. d. S., Generoso, A. L., Soares, B. D. F., Cançado, G. M. d. A. (2011). An improved method for genomic DNA extraction from strawberry leaves. Ciência Rural, 41, 1383-1389. Pombo, M., Rosli, H., Martínez, G., & Civello, P. (2011). UV-C treatment affects the expression and activity of defense genes in strawberry fruit (Fragaria×ananassa, Duch.) (Vol. 59), 94-102. Schumacher, J. (2017). How light affects the life of Botrytis. Fungal Genetics and Biology, 106, 26-41. doi:https://doi.org/10.1016/j.fgb.2017.06.002 Shimoda, M., & Honda, K.-i. (2013). Insect reactions to light and its applications to pest management. Applied Entomology and Zoology, 48(4), 413-421. doi:10.1007/s13355-013-0219-x Shirasawa, H., Ueno, M., Kihara, J., & Arase, S. (2012). Protective effect of red light against blast disease caused by Magnaporthe oryzae in rice. Crop Protection, 39, 41-44. doi:https://doi.org/10.1016/j.cropro.2012.03.026 Smith, B. J. (2008). Epidemiology and Pathology of Strawberry Anthracnose: A North American Perspective. HortScience, 43(1), 69-73. doi:https://doi.org/10.21273/HORTSCI.43.1.69 Tisch, D., & Schmoll, M. (2010). Light regulation of metabolic pathways in fungi. Applied Microbiology and Biotechnology, 85(5), 1259-1277. doi:10.1007/s00253-009-2320-1 W. Turechek, W., Peres, N., & A. Werner, N. (2006). Pre and PostInfection Activity of Pyraclostrobin for Control of Anthracnose Fruit Rot of Strawberry Caused by Colletotrichum acutatum (Vol. 90), 862-868. Wang, F., Zhang, F., Chen, M., Liu, Z., Zhang, Z., Fu, J., & Ma, Y. (2017). Comparative Transcriptomics Reveals Differential Gene Expression Related to Colletotrichum gloeosporioides Resistance in the Octoploid Strawberry. Front Plant Sci, 8, 779. doi:10.3389/fpls.2017.00779 Wang, Y., Wang, Y., Wang, Y., Murray, C. K., Hamblin, M. R., Hooper, D. C., & Dai, T. (2017). Antimicrobial blue light inactivation of pathogenic microbes: State of the art. Drug Resist Updat, 33-35, 1-22. doi:10.1016/j.drup.2017.10.002 Wang, Y., Wang, Y., Wang, Y., Murray, C. K., Hamblin, M. R., Hooper, D. C., & Dai, T. (2017). Antimicrobial blue light inactivation of pathogenic microbes: State of the art. Drug Resist Updat, 33-35, 1-22. doi:10.1016/j.drup.2017.10.002 Weir, B. S., Johnston, P. R., & Damm, U. (2012). The Colletotrichum gloeosporioides species complex. Studies in Mycology, 73, 115-180. doi:https://doi.org/10.3114/sim0011 Wollaeger, H. M., & Runkle, E. S. (2015). Growth and Acclimation of Impatiens, Salvia, Petunia, and Tomato Seedlings to Blue and Red Light. HortScience, 50(4), 522-529. Xu, H., Fu, Y.n., Li, T.l., & Wang, R. (2017). Effects of different LED light wavelengths on the resistance of tomato against Botrytis cinerea and the corresponding physiological mechanisms. Journal of Integrative Agriculture, 16(1), 106-114. doi:https://doi.org/10.1016/S2095-3119(16)61435-1 Yanagi, T., Yachi, T., Okuda, N., & Okamoto, K. (2006). Light quality of continuous illuminating at night to induce floral initiation of Fragaria chiloensis L. CHI-24-1 (Vol. 109), 309-314. Yorio, N. C., Goins, G. D., Kagie, H. R., Wheeler, R. M., & Sager, J. C. (2001). Improving Spinach, Radish, and Lettuce Growth under Red Light-emitting Diodes (LEDs) with Blue Light Supplementation. HortScience, 36(2), 380-383. Yu, S. M., Ramkumar, G., & Lee, Y. H. (2013). Light quality influences the virulence and physiological responses of Colletotrichum acutatum causing anthracnose in pepper plants. J Appl Microbiol, 115(2), 509-516. doi:10.1111/jam.12252 余志儒, 蔡志濃, 高靜華, 安寶貞, 謝廷芳, 張廣淼, 彭淑貞. (2015). 草莓無農藥栽培技術. Agriculture Policy & Review, 281, 91-94. 羅一瑋. (2018). Studies on Phototaxis of Chinese Wolfberry Aphid(Aphis Gossypii).(博士論文), 蘭州大学. (S435.671) 韓國興, 禮茜, 孫非洲, &李紅葉. (2009). 杭州地區草莓炭疽病病原鑑定及其對多菌靈和乙霉威的抗藥性. [Identification and Its Resistance against FungicidesCarbendazim and Diethofencarb of Colletotrichum gloeosporioides on Strawberryin Hangzhou]. 浙江農業科學, 2009(6), 1169-1172. 鄧汀欽. (2015). 臺灣植物病害名彙 (5 ed.): 商品檢驗局. 鍾國雄. (2017). 草莓產銷現況與問題探討. 苗栗區農情月刊, 40, 13-17. 鐘珮哲. (2016). 草莓重要病害檢測技術之應用. 農政與農情, 292, 82-85. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21755 | - |
| dc.description.abstract | 草莓 (Fragaria x ananassa Duchessne) ,全臺種植面積達 550 公頃,於 2017 年 年產值近 10 億新台幣。草莓植株因台灣夏季高溫而無法越夏,農民需在隔年以走 莖苗重新進行定植。炭疽病 是 草莓 苗 期之 重大 病 害,造成 草 莓苗 的 大量 損 失,健 康 種苗 的 缺乏 成為 草 莓產 業 之嚴 重問 題。目前 農 民主 要仰 賴 殺菌 劑防 治 炭疽 病,然而 長年 的 殺菌 劑 使用 已導 致 炭疽 病 產生 抗藥 性,因此 需要 新 的防 治 手段 減少 殺 菌劑 之 使用 以及 維 持草 莓 苗之 健康。已有多篇 研究指不同光波長對植物病原有生長、繁殖抑制效果,且具有提升植物對病害抗性 之能力。因此本研究透過 200 PPFD 之不同光波長 (白光、紅光、2/3 紅光+1/3 藍 光、1/3 紅光+2/3 藍光、藍光) 照射在 PDA (Potato dextrose agar) 皿培之 Colletotrichum siamense、C. siamense 接種之草莓葉片及草莓苗、待克利上,尋找最 具有炭疽病抑制效果及草莓生長促進效果之光波長,並觀察光波長是否可以和農 藥同時使用,期望能作為草莓溫室育苗之物理防治策略。結果中發現與白光相比時, 1/3 紅光+2/3 藍光混和波長可抑制 C. siamense 14 %之菌絲生長、5%之產孢量以及 11%之孢子發芽率。同時 1/3 紅光+2/3 藍光波長也具有促進草莓防禦基因 Chitinase2 基因 1.3 倍之表現量之特性。1/3 紅光+2/3 藍光波長在實驗中也展現植株生長促 進之效果,與白光相比時其促進植株 1.1 倍葉片數、2.4 倍之走莖數及 1.3 倍鮮重 之生長。而所有波長皆不影響待克利之有效性及造成藥害。因 1/3 紅光+2/3 藍光具 有抑制 C. siamense 生長、促進草莓防禦基因表現以及促進草莓苗生長之特性,且 不會影響待克利之有效性,因此本研究提倡農民育草莓苗時給予 1/3 紅光+2/3 藍 光混和波長照射,以達到抑制病害並同時促進草莓苗生長之目標。 | zh_TW |
| dc.description.abstract | Strawberry is an important economic crop in Taiwan, the total planting area has reached 550 hectares, and the annual output value is nearly 1 billion NTD. However, due to the high temperature and humidity in Taiwan, strawberry cannot be planted continuously. Instead, strawberry farmers replant with strawberry runners annually. Anthracnose is one of the most severe diseases in the strawberry nursery industry, leading to a great loss on strawberry seedling. The lack of healthy seedlings has become a huge obstacle in the strawberry industry in Taiwan. Currently, farmers mainly rely on fungicides to prevent anthracnose, as a consequence, the massive use of fungicides has given rise to the anthracnose drug resistance. As a result, it is an emerging need of new methods for controlling this disease, in order to reduce the use of fungicides. Numerous studies have shown different light wavelengths capable of suppressing both plant pathogen growth and plant diseases. Here, in this study, we illuminated different light wavelengths (white light, red light, 2/3red+1/3blue, 1/3red+2/3blue, blue light) at 200 PPFD on Colletotrichum siamense on PDA (Potato dextrose agar) , inoculated strawberry leaves and seedlings, and co-treatment with difenoconazole, to obtain the optimal wavelength for controlling anthracnose disease, to promote strawberry seedlings growth, and to implement with difenoconazole, respectively. Our results showed that, in III compared to white light, 1/3red+2/3blue could inhibit 14% C. siamese mycelial growth, 5% of the sporulation and 11% of spore germination. In addition to C.siamense growth inhibition, 1/3red+2/3blue light could also augment the strawberry defense gene expressions, such as Chitinase-2 gene. The 1/3red+2/3blue light was also found to increase leave number, runner number, and overall fresh weight of seedlings than white light does. Furthermore, all light wavelengths would not impair difenoconazole’s effectiveness or enhance phytotoxicity. In conclusion, our study indicates that 1/3red+2/3blue light shows the characteristics of the growth inhibition of C. siamense, defense genes upregulation, and the growth of strawberry. Therefore, we recommend 1/3red+2/3blue light condition during the nursery period can be applied for suppressing anthracnose disease and promoting strawberry seedling growth. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:45:24Z (GMT). No. of bitstreams: 1 ntu-108-R05645008-1.pdf: 3012868 bytes, checksum: 33da808464a57cd8f4862e5db5a7f253 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目錄 IV 表目錄 VI 圖目錄 VII 第1章 前言 1 第2章 前人研究 3 2.1 草莓炭疽病原種類及分類 3 2.2 草莓炭疽病之病徵及傳播 4 2.3 炭疽病之防治 5 2.4 光波長對真菌之影響 6 2.5 光波長對病害之影響 8 2.6 光波長促進植物生長 9 第3章 材料與方法 11 3.1 試驗植物及接種源 11 3.2 光源 11 3.3 接種源製備 12 3.4 菌絲生長實驗 12 3.5 孢子萌芽實驗 12 3.6 模擬溫室應用情況下炭疽病抑制實驗 13 3.7 炭疽病菌侵入感染實驗 13 3.8 炭疽病嚴重度實驗 13 3.9 炭疽病子代致病性實驗 14 3.10 草莓防禦基因表現實驗 14 3.11 草莓炭疽病抗性實驗 14 3.12 草莓苗生長實驗 15 3.13 草莓苗炭疽病抑制實驗 15 3.14 待克利有效性實驗 16 3.15 待克利藥害實驗 16 3.16 DNA萃取 16 3.17 RNA萃取 17 3.18 引子設計及Real-time PCR 17 3.19 統計與分析 18 第4章 結果 19 4.1 藍、紫2光波長抑制Colletotrichum siamense菌絲生長、產孢及孢子發芽 19 4.2 模擬溫室應用情況下藍光波長抑制炭疽病 21 4.3 藍光波長影響炭疽病病害進程 21 4.4 藍、紫2光波長促進草莓苗防禦反應 23 4.5 光波長無促進草莓苗對炭疽病抗性 24 4.6 紫1、紫2光波長促進草莓苗生長 24 4.7 藍光波長抑制草莓苗之炭疽病 25 4.8 光波長不影響待克利之有效性及造成藥害 26 4.9 總結 26 第5章 討論 28 5.1 光波長防治之重要性 28 5.2 光波長抑制微生物生長 28 5.3 光促進植物防禦反應 29 5.4 光促進植物生長 30 5.5 光波長作為草莓病害防治手段之可行性 31 第6章 參考文獻 33 第7章 表 37 第8章 圖 42 | |
| dc.language.iso | zh-TW | |
| dc.title | 草莓苗期炭疽病之光波物理防治 | zh_TW |
| dc.title | Light wavelength controls anthracnose disease of
strawberry seedling | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鍾嘉綾,洪挺軒 | |
| dc.subject.keyword | 草莓,炭疽病,Colletotrichum siamense,Light-emitting diode (LED),紅光,藍光,混色光, | zh_TW |
| dc.subject.keyword | Strawberry,Anthraconose,Colletotrichum siamense,Light-emitting diode (LED),Blue light,Red light,Gradient light, | en |
| dc.relation.page | 71 | |
| dc.identifier.doi | 10.6342/NTU201900544 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2019-02-15 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物醫學碩士學位學程 | zh_TW |
| 顯示於系所單位: | 植物醫學碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 2.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
