Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21743
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor張英峯(Ing-Feng Chang)
dc.contributor.authorPei-Yuan Chenen
dc.contributor.author陳培元zh_TW
dc.date.accessioned2021-06-08T03:44:53Z-
dc.date.copyright2021-01-20
dc.date.issued2020
dc.date.submitted2021-01-07
dc.identifier.citation蔡旻潔,2013。阿拉伯芥DREB1A基因表現受ABF3及14-3-3蛋白調控機制之研究。
國立台灣大學植物科學所。
葉忠岳,2016。大量表達阿拉伯芥WRKY25基因影響鹽分逆境反應與生長發育。國立台灣大學植物科學所。
Adachi, H., Nakano, T., Miyagawa, N., Ishihama, N., Yoshioka, M., Katou, Y., Yaeno, T., Shirasu, K., Yoshioka, H. (2015). WRKY transcription factors phosphorylated by MAPK regulate a plant immune NADPH oxidase in Nicotiana benthamiana. The Plant Cell, 27, 2645-2663.
Agarwal, P. K., Agarwal, P., Reddy, M., Sopory, S. K. (2006). Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports, 25, 1263-1274.
Akhtar, M., Jaiswal, A., Taj, G., Jaiswal, J., Qureshi, M., Singh, N. (2012). DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. Journal of Genetics, 91, 385-395.
Arulpragasam, A., Magno, A. L., Ingley, E., Brown, S. J., Conigrave, A. D., Ratajczak, T., Ward, B. K. (2012). The adaptor protein 14-3-3 binds to the calcium-sensing receptor and attenuates receptor-mediated Rho kinase signalling. Biochemical Journal, 441, 995-1007.
Asano, T., Hayashi, N., Kikuchi, S., Ohsugi, R. (2012). CDPK-mediated abiotic stress signaling. Plant Signaling Behavior, 7, 817-821.
Assaha, D. V., Ueda, A., Saneoka, H., Al-Yahyai, R., Yaish, M. W. (2017). The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Frontiers in Physiology, 8, 509.
Ay, N., Irmler, K., Fischer, A., Uhlemann, R., Reuter, G., Humbeck, K. (2009). Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana. The Plant Journal, 58, 333-346.
Baillo, E. H., Kimotho, R. N., Zhang, Z., Xu, P. (2019). Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes, 10, 771.
Bakshi, M., Oelmüller, R. (2014). WRKY transcription factors: Jack of many trades in plants. Plant Signaling Behavior, 9, e27700.
Behnam, B., Kikuchi, A., Celebi-Toprak, F., Yamanaka, S., Kasuga, M., Yamaguchi-Shinozaki, K., Watanabe, K. N. (2006). The Arabidopsis DREB1A gene driven by the stress-inducible rd29A promoter increases salt-stress tolerance in proportion to its copy number in tetrasomic tetraploid potato (Solanum tuberosum). Plant Biotechnology, 23, 169-177.
Besseau, S., Li, J., Palva, E. T. (2012). WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. Journal of Experimental Botany, 63, 2667-2679.
Birkenbihl, R. P., Diezel, C., Somssich, I. E. (2012). Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiology, 159, 266-285.
Bostock, R. M. (2005). Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annual Review of Phytopathology, 43, 545-580.
Brand, L. H., Fischer, N. M., Harter, K., Kohlbacher, O., Wanke, D. (2013). Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamics and in vitro binding assays. Nucleic Acids Research, 41, 9764-9778.
Chang, H. C., Tsai, M. C., Wu, S. S., Chang, I. F. (2019). Regulation of ABI5 expression by ABF3 during salt stress responses in Arabidopsis thaliana. Botanical Studies, 60, 16.
Chang, I. F., Curran, A., Woolsey, R., Quilici, D., Cushman, J. C., Mittler, R., Harmon, A., Harper, J. F. (2009). Proteomic profiling of tandem affinity purified 14‐3‐3 protein complexes in Arabidopsis thaliana. Proteomics, 9, 2967-2985.
Chaudhri, M., Scarabel, M., Aitken, A. (2003). Mammalian and yeast 14-3-3 isoforms form distinct patterns of dimers in vivo. Biochemical and Biophysical Research Communications, 300, 679-685.
Chen, F., Li, Q., Sun, L., He, Z. (2006). The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress. DNA research, 13, 53-63.
Chen, L. T., Luo, M., Wang, Y. Y., Wu, K. (2010). Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. Journal of Experimental Botany, 61, 3345-3353.
Chen, L., Song, Y., Li, S., Zhang, L., Zou, C., Yu, D. (2012). The role of WRKY transcription factors in plant abiotic stresses. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1819, 120-128.
Chen, X., Lu, L., Mayer, K. S., Scalf, M., Qian, S., Lomax, A., Smith, L. M., Zhong, X. (2016). POWERDRESS interacts with HISTONE DEACETYLASE 9 to promote aging in Arabidopsis. Elife, 5, e17214.
Cheng, Y., Ahammed, G. J., Yao, Z., Ye, Q., Ruan, M., Wang, R., Li, Z., Zhou, G., Wan, H. (2019). Comparative genomic analysis reveals extensive genetic variations of WRKYs in Solanaceae and functional variations of CaWRKYs in Pepper. Frontiers in Genetics, 10, 492.
Cheong, Y. H., Chang, H. S., Gupta, R., Wang, X., Zhu, T., Luan, S. (2002). Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiology, 129, 661-677.
Chi, Y., Yang, Y., Zhou, Y., Zhou, J., Fan, B., Yu, J. Q., Chen, Z. (2013). Protein–protein interactions in the regulation of WRKY transcription factors. Molecular Plant, 6, 287-300.
Chisholm, S. T., Coaker, G., Day, B., Staskawicz, B. J. (2006). Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 124, 803-814.
Ciolkowski, I., Wanke, D., Birkenbihl, R. P., Somssich, I. E. (2008). Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Molecular Biology, 68, 81-92.
Clough, S. J., Bent, A. F. (1998). Floral dip: a simplified method for Agrobacterium‐mediated transformation of Arabidopsis thaliana. The Plant Journal, 16, 735-743.
Curran, A., Chang, I. F., Chang, C. L., Garg, S., Miguel, R. M., Barron, Y. D., Li, Y., Romanowsky, S., Cushman, J. C., Gribskov, M. (2011). Calcium-dependent protein kinases from Arabidopsis show substrate specificity differences in an analysis of 103 substrates. Frontiers in Plant Science, 2, 36.
Ding, Z. J., Yan, J. Y., Li, C. X., Li, G. X., Wu, Y. R., Zheng, S. J. (2015). Transcription factor WRKY46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis. The Plant Journal, 84, 56-69.
Doll, J., Muth, M., Riester, L., Nebel, S., Bresson, J., Lee, H. C., Zentgraf, U. (2020). Arabidopsis thaliana WRKY25 transcription factor mediates oxidative stress tolerance and regulates senescence in a redox-dependent manner. Frontiers in Plant Science, 10, 1734.
Dong, H., Zhen, Z., Peng, J., Chang, L., Gong, Q., Wang, N. N. (2011). Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity and accumulation in Arabidopsis. Journal of Experimental Botany, 62, 4875-4887.
Duan, M. R., Nan, J., Liang, Y. H., Mao, P., Lu, L., Li, L., Wei, C., Lai, L., Li, Y., Su, X. D. (2007). DNA binding mechanism revealed by high resolution crystal structure of Arabidopsis thaliana WRKY1 protein. Nucleic Acids Research, 35, 1145-1154.
Dubouzet, J. G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E. G., Miura, S., Seki, M., Shinozaki, K., Yamaguchi‐Shinozaki, K. (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought‐, high‐salt‐and cold‐responsive gene expression. The Plant Journal, 33, 751-763.
Dutta, A., Choudhary, P., Caruana, J., Raina, R. (2017). JMJ27, an Arabidopsis H3K9 histone demethylase, modulates defense against Pseudomonas syringae and flowering time. The Plant Journal, 91, 1015-1028.
Edwards, K., Johnstone, C., Thompson, C. (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research, 19, 1349.
Etesami, H., Jeong, B. R. (2018). Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicology and Environmental Safety, 147, 881-896.
Eulgem, T., Rushton, P. J., Robatzek, S., Somssich, I. E. (2000). The WRKY superfamily of plant transcription factors. Trends in Plant Science, 5, 199-206.
Finatto, T., Viana, V. E., Woyann, L. G., Busanello, C., Maia, L. C., Oliveira, A. C. (2018). Can WRKY transcription factors help plants to overcome environmental challenges? Genetics and Molecular Biology, 41, 533-544.
Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K., Shinozaki, K. (2006). Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology, 9, 436-442.
Gao, X., Cox Jr, K. L., He, P. (2014). Functions of calcium-dependent protein kinases in plant innate immunity. Plants, 3, 160-176.
Gendrel, A. V., Lippman, Z., Martienssen, R., Colot, V. (2005). Profiling histone modification patterns in plants using genomic tiling microarrays. Nature Methods, 2, 213-218.
Ghorbani, S., Fossbakk, A., Jorge-Finnigan, A., Flydal, M. I., Haavik, J., Kleppe, R. (2016). Regulation of tyrosine hydroxylase is preserved across different homo-and heterodimeric 14-3-3 proteins. Amino Acids, 48, 1221-1229.
Grunewald, W., De Smet, I., Lewis, D. R., Löfke, C., Jansen, L., Goeminne, G., Bossche, R. V., Karimi, M., De Rybel, B., Vanholme, B. (2012). Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. Proceedings of the National Academy of Sciences, 109, 1554-1559.
Guan, Y., Meng, X., Khanna, R., LaMontagne, E., Liu, Y., Zhang, S. (2014). Phosphorylation of a WRKY transcription factor by MAPKs is required for pollen development and function in Arabidopsis. PLoS Genetics, 10, e1004384.
Hajlaoui, H., El Ayeb, N., Garrec, J. P., Denden, M. (2010). Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize (Zea mays L.) varieties. Industrial Crops and Products, 31, 122-130.
He, M., He, C. Q., Ding, N. Z. (2018). Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Frontiers in Plant Science, 9, 1771.
Hirayama, T., Shinozaki, K. (2010). Research on plant abiotic stress responses in the post‐genome era: Past, present and future. The Plant Journal, 61, 1041-1052.
Huang, D., Lan, W., Li, D., Deng, B., Lin, W., Ren, Y., Miao, Y. (2018). WHIRLY1 occupancy affects histone lysine modification and WRKY53 transcription in Arabidopsis developmental manner. Frontiers in Plant Science, 9, 1503.
Imran, Q. M., Hussain, A., Mun, B. G., Lee, S. U., Asaf, S., Ali, M. A., Lee, I. J., Yun, B. W. (2018). Transcriptome wide identification and characterization of NO-responsive WRKY transcription factors in Arabidopsis thaliana. Environmental and Experimental Botany, 148, 128-143.
Ishihama, N., Adachi, H., Yoshioka, M., Yoshioka, H. (2014). In vivo phosphorylation of WRKY transcription factor by MAPK. Plant MAP Kinases, 1171, 171-181.
Ishihama, N., Yamada, R., Yoshioka, M., Katou, S., Yoshioka, H. (2011). Phosphorylation of the Nicotiana benthamiana WRKY8 transcription factor by MAPK functions in the defense response. The Plant Cell, 23, 1153-1170.
Ito, Y., Katsura, K., Maruyama, K., Taji, T., Kobayashi, M., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K. (2006). Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant and Cell Physiology, 47, 141-153.
Ji, H., Pardo, J. M., Batelli, G., Van Oosten, M. J., Bressan, R. A., Li, X. (2013). The Salt Overly Sensitive (SOS) pathway: established and emerging roles. Molecular Plant, 6, 275-286.
Jiang, Y., Deyholos, M. K. (2006). Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biology, 6, 25.
Jiang, Y., Deyholos, M. K. (2009). Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Molecular Biology, 69, 91-105.
Kaur, N., Gupta, A. K. (2005). Signal transduction pathways under abiotic stresses in plants. Current Science, 88, 1771-1780.
Kidokoro, S., Kim, J. S., Ishikawa, T., Suzuki, T., Shinozaki, K., Yamaguchi-Shinozaki, K. (2020). DREB1A/CBF3 is repressed by transgene-induced DNA methylation in the Arabidopsis ice1-1 mutant. The Plant Cell, 32, 1035-1048.
Kim, K. C., Lai, Z., Fan, B., Chen, Z. (2008). Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. The Plant Cell, 20, 2357-2371.
Kimotho, R. N., Baillo, E. H., Zhang, Z. (2019). Transcription factors involved in abiotic stress responses in Maize (Zea mays L.) and their roles in enhanced productivity in the post genomics era. PeerJ, 7, e7211.
Knight, H., Knight, M. R. (2001). Abiotic stress signalling pathways: specificity and cross-talk. Trends in Plant Science, 6, 262-267.
Kohan-Baghkheirati, E., Bagherieh-Najjar, M., Abdolzadeh, A., Geisler-Lee, J. (2018). Altered DREB1A gene expression in Arabidopsis thaliana leads to change in root growth, antioxidant enzymes activity, and response to salinity but not to cold. Journal of Genetic Resources, 4, 90-104.
Krasensky, J., Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63, 1593-1608.
Kumar, A., Kumar, S., Kumar, U., Suravajhala, P., Gajula, M. P. (2016). Functional and structural insights into novel DREB1A transcription factors in common wheat (Triticum aestivum L.): A molecular modeling approach. Computational Biology and Chemistry, 64, 217-226.
Lata, C., Prasad, M. (2011). Role of DREBs in regulation of abiotic stress responses in plants. Journal of Experimental Botany, 62, 4731-4748.
Lata, C., Yadav, A., Prasad, M. (2011). Role of plant transcription factors in abiotic stress tolerance. Abiotic Stress Response in Plants, 10, 269-296.
Lewis, D. R., Ramirez, M. V., Miller, N. D., Vallabhaneni, P., Ray, W. K., Helm, R. F., Winkel, B. S., Muday, G. K. (2011). Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks. Plant Physiology, 156, 144-164.
Li, C., Ng, C. K.Y., Fan, L. M. (2015). MYB transcription factors, active players in abiotic stress signaling. Environmental and Experimental Botany, 114, 80-91.
Li, S., Fu, Q., Chen, L., Huang, W., Yu, D. (2011). Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta, 233, 1237-1252.
Li, S., Fu, Q., Huang, W., Yu, D. (2009). Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Reports, 28, 683-693.
Li, S., Zhou, X., Chen, L., Huang, W., Yu, D. (2010). Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. Molecules and Cells, 29, 475-483.
Li, W., Wang, H., Yu, D. (2016). Arabidopsis WRKY transcription factors WRKY12 and WRKY13 oppositely regulate flowering under short-day conditions. Molecular Plant, 9, 1492-1503.
Lindemose, S., O'Shea, C., Jensen, M. K., Skriver, K. (2013). Structure, function and networks of transcription factors involved in abiotic stress responses. International Journal of Molecular Sciences, 14, 5842-5878.
Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. The Plant Cell, 10, 1391-1406.
Liu, Z. Q., Yan, L., Wu, Z., Mei, C., Lu, K., Yu, Y. T., Liang, S., Zhang, X. F., Wang, X. F., Zhang, D. P. (2012). Cooperation of three WRKY-domain transcription factors WRKY18, WRKY40, and WRKY60 in repressing two ABA-responsive genes ABI4 and ABI5 in Arabidopsis. Journal of Experimental Botany, 63, 6371-6392.
Liu, Z., Jia, Y., Ding, Y., Shi, Y., Li, Z., Guo, Y., Gong, Z., Yang, S. (2017). Plasma membrane CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune CBF signaling during cold response. Molecular Cell, 66, 117-128. e115.
Luo, M., Wang, Y. Y., Liu, X., Yang, S., Lu, Q., Cui, Y., Wu, K. (2012). HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis. Journal of Experimental Botany, 63, 3297-3306.
Maeo, K., Hayashi, S., Kojima-Suzuki, H., Morikami, A., Nakamura, K. (2001). Role of conserved residues of the WRKY domain in the DNA-binding of tobacco WRKY family proteins. Bioscience, Biotechnology, and Biochemistry, 65, 2428-2436.
Mao, G., Meng, X., Liu, Y., Zheng, Z., Chen, Z., Zhang, S. (2011). Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. The Plant Cell, 23, 1639-1653.
Marques, D. N., dos Reis, S. P., de Souza, C. R. (2017). Plant NAC transcription factors responsive to abiotic stresses. Plant Gene, 11, 170-179.
Mazel, A., Leshem, Y., Tiwari, B. S., Levine, A. (2004). Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiology, 134, 118-128.
Miao, Y., Laun, T., Zimmermann, P., Zentgraf, U. (2004). Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Molecular Biology, 55, 853-867.
Miura, K., Jin, J. B., Lee, J., Yoo, C. Y., Stirm, V., Miura, T., Ashworth, E. N., Bressan, R. A., Yun, D. J., Hasegawa, P. M. (2007). SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. The Plant Cell, 19, 1403-1414.
Mizoi, J., Shinozaki, K., Yamaguchi-Shinozaki, K. (2012). AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1819, 86-96.
Nakashima, K., Ito, Y., Yamaguchi-Shinozaki, K. (2009). Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology, 149, 88-95.
Narusaka, Y., Nakashima, K., Shinwari, Z. K., Sakuma, Y., Furihata, T., Abe, H., Narusaka, M., Shinozaki, K., Yamaguchi‐Shinozaki, K. (2003). Interaction between two cis‐acting elements, ABRE and DRE, in ABA‐dependent expression of Arabidopsis rd29A gene in response to dehydration and high‐salinity stresses. The Plant Journal, 34, 137-148.
Novillo, F., Alonso, J. M., Ecker, J. R., Salinas, J. (2004). CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proceedings of the National Academy of Sciences, 101, 3985-3990.
Oh, S. J., Song, S. I., Kim, Y. S., Jang, H. J., Kim, S. Y., Kim, M., Kim, Y. K., Nahm, B. H., Kim, J. K. (2005). Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiology, 138, 341-351.
Osakabe, Y., Kajita, S., Osakabe, K. (2011). Genetic engineering of woody plants: current and future targets in a stressful environment. Physiologia Plantarum, 142, 105-117.
Pandey, S. P., Somssich, I. E. (2009). The role of WRKY transcription factors in plant immunity. Plant Physiology, 150, 1648-1655.
Paul, A. L., Dension, F. C., Schultz, E. R., Zupanska, A. K., Ferl, R. J. (2012). 14-3-3 Phosphoprotein interaction networks–does isoform diversity present functional interaction specification? Frontiers in Plant Science, 3, 190.
Pedroza-García, J. A., Nájera-Martínez, M., de la Paz Sanchez, M., Plasencia, J. (2015). Arabidopsis thaliana thymidine kinase 1a is ubiquitously expressed during development and contributes to confer tolerance to genotoxic stress. Plant Molecular Biology, 87, 303-315.
Peng, X., Wu, Q., Teng, L., Tang, F., Pi, Z., Shen, S. (2015). Transcriptional regulation of the paper mulberry under cold stress as revealed by a comprehensive analysis of transcription factors. BMC Plant Biology, 15, 1-14.
Pennington, K., Chan, T., Torres, M., Andersen, J. (2018). The dynamic and stress-adaptive signaling hub of 14-3-3: emerging mechanisms of regulation and context-dependent protein–protein interactions. Oncogene, 37, 5587-5604.
Phukan, U. J., Jeena, G. S., Shukla, R. K. (2016). WRKY transcription factors: molecular regulation and stress responses in plants. Frontiers in Plant Science, 7, 760.
Ratcliffe, O. J., Riechmann, J. L. (2002). Arabidopsis transcription factors and the regulation of flowering time: a genomic perspective. Current Issues in Molecular Biology, 4, 77-92.
Reyes, J. C., Hennig, L., Gruissem, W. (2002). Chromatin-remodeling and memory factors. New regulators of plant development. Plant Physiology, 130, 1090-1101.
Riechmann, J. L., Heard, J., Martin, G., Reuber, L., Jiang, C. Z., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O., Samaha, R. (2000). Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 290, 2105-2110.
Rushton, P. J., Somssich, I. E., Ringler, P., Shen, Q. J. (2010). WRKY transcription factors. Trends in Plant Science, 15, 247-258.
Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y., Hunt, M. D. (1996). Systemic acquired resistance. The Plant Cell, 8, 1809.
Sakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K. (2006). Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. The Plant Cell, 18, 1292-1309.
Schluttenhofer, C., Yuan, L. (2015). Regulation of specialized metabolism by WRKY transcription factors. Plant Physiology, 167, 295-306.
Schmutz, J., Cannon, S. B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D. L., Song, Q., Thelen, J. J., Cheng, J. (2010). Genome sequence of the palaeopolyploid soybean. Nature, 463, 178-183.
Schulz, P., Herde, M., Romeis, T. (2013). Calcium-dependent protein kinases: hubs in plant stress signaling and development. Plant Physiology, 163, 523-530.
Schwechheimer, C., Bevan, M. (1998). The regulation of transcription factor activity in plants. Trends in Plant Science, 3, 378-383.
Shang, Y., Yan, L., Liu, Z. Q., Cao, Z., Mei, C., Xin, Q., Wu, F. Q., Wang, X. F., Du, S. Y., Jiang, T. (2010). The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. The Plant Cell, 22, 1909-1935.
Shen, Y. H., Godlewski, J., Bronisz, A., Zhu, J., Comb, M. J., Avruch, J., Tzivion, G. (2003). Significance of 14-3-3 self-dimerization for phosphorylation-dependent target binding. Molecular Biology of the Cell, 14, 4721-4733.
Shoji, T., Suzuki, K., Abe, T., Kaneko, Y., Shi, H., Zhu, J. K., Rus, A., Hasegawa, P. M., Hashimoto, T. (2006). Salt stress affects cortical microtubule organization and helical growth in Arabidopsis. Plant and Cell Physiology, 47, 1158-1168.
Short, J. D., Dere, R., Houston, K. D., Cai, S. L., Kim, J., Bergeron, J. M., Shen, J., Liang, J., Bedford, M. T., Mills, G. B. (2010). AMPK‐mediated phosphorylation of murine p27 at T197 promotes binding of 14‐3‐3 proteins and increases p27 stability. Molecular Carcinogenesis: Published in cooperation with the University of Texas MD Anderson Cancer Center, 49, 429-439.
Shu, L. J., Liao, J. Y., Lin, N. C., Chung, C. L. (2018). Identification of a strawberry NPR-like gene involved in negative regulation of the salicylic acid-mediated defense pathway. PloS One, 13, e0205790.
Sirichandra, C., Davanture, M., Turk, B. E., Zivy, M., Valot, B., Leung, J., Merlot, S. (2010). The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover. PloS One, 5, e13935.
Song, H., Wang, P., Nan, Z., Wang, X. (2014). The WRKY transcription factor genes in Lotus japonicus. International Journal of Genomics, 2014, 1-15.
Thomas, D., Guthridge, M., Woodcock, J., Lopez, A. (2005). 14-3-3 protein signaling in development and growth factor responses. Current Topics in Developmental Biology, 67, 286-305.
Tzivion, G., Shen, Y. H., Zhu, J. (2001). 14-3-3 proteins; bringing new definitions to scaffolding. Oncogene, 20, 6331-6338.
Ülker, B., Mukhtar, M. S., Somssich, I. E. (2007). The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta, 226, 125-137.
Van Kleeff, P., Jaspert, N., Li, K., Rauch, S., Oecking, C., De Boer, A. (2014). Higher order Arabidopsis 14-3-3 mutants show 14-3-3 involvement in primary root growth both under control and abiotic stress conditions. Journal of Experimental Botany, 65, 5877-5888.
Villano, C., Esposito, S., D’Amelia, V., Garramone, R., Alioto, D., Zoina, A., Aversano, R., Carputo, D. (2020). WRKY genes family study reveals tissue-specific and stress-responsive TFs in wild potato species. Scientific Reports, 10, 1-12.
Wang, D., Amornsiripanitch, N., Dong, X. (2006). A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathogens, 2, e123.
Wang, Q., Wang, M., Zhang, X., Hao, B., Kaushik, S., Pan, Y. (2011). WRKY gene family evolution in Arabidopsis thaliana. Genetica, 139, 973.
Wang, P. H., Lee, C. E., Lin, Y. S., Lee, M. H., Chen, P. Y., Chang, H. C., Chang, I. F. (2019). The glutamate receptor-like protein GLR3.7 interacts with 14-3-3ω and participates in salt stress response in Arabidopsis thaliana. Frontiers in Plant Science, 10, 1169.
Wen, F., Ye, F., Xiao, Z., Liao, L., Li, T., Jia, M., Liu, X., Wu, X. (2020). Genome-wide survey and expression analysis of calcium-dependent protein kinase (CDPK) in grass Brachypodium distachyon. BMC genomics, 21, 1-17.
Wu, H., Ni, Z., Yao, Y., Guo, G., Sun, Q. (2008). Cloning and expression profiles of 15 genes encoding WRKY transcription factor in wheat (Triticum aestivem L.). Progress in Natural Science, 18, 697-705.
Xie, Z., Nolan, T. M., Jiang, H., Yin, Y. (2019). AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis. Frontiers in Plant Science, 10, 228.
Yamaguchi-Shinozaki, K., Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology, 57, 781-803.
Yamasaki, K., Kigawa, T., Inoue, M., Tateno, M., Yamasaki, T., Yabuki, T., Aoki, M., Seki, E., Matsuda, T., Tomo, Y. (2005). Solution structure of an Arabidopsis WRKY DNA binding domain. The Plant Cell, 17, 944-956.
Yamasaki, K., Kigawa, T., Seki, M., Shinozaki, K., Yokoyama, S. (2013). DNA-binding domains of plant-specific transcription factors: structure, function, and evolution. Trends in Plant Science, 18, 267-276.
Yanagisawa, S. (1998). Transcription factors in plants: physiological functions and regulation of expression. Journal of Plant Research, 111, 363-371.
Yip Delormel, T., Boudsocq, M. (2019). Properties and functions of calcium‐dependent protein kinases and their relatives in Arabidopsis thaliana. New Phytologist, 224, 585-604.
Yokotani, N., Sato, Y., Tanabe, S., Chujo, T., Shimizu, T., Okada, K., Yamane, H., Shimono, M., Sugano, S., Takatsuji, H. (2013). WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. Journal of Experimental Botany, 64, 5085-5097.
Yoo, S. D., Cho, Y. H., Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols, 2, 1565.
Zandalinas, S. I., Fritschi, F. B., Mittler, R. (2020). Signal transduction networks during stress combination. Journal of Experimental Botany, 71, 1734-1741.
Zentgraf, U., Doll, J. (2019). Arabidopsis wrky53, a node of multi-layer regulation in the network of senescence. Plants, 8, 578.
Zhang, L., Chen, L., Yu, D. (2018). Transcription factor WRKY75 interacts with DELLA proteins to affect flowering. Plant Physiology, 176, 790-803.
Zhang, Y., Wang, L. (2005). The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evolutionary Biology, 5, 1-12.
Zhang, Y., Yu, H., Yang, X., Li, Q., Ling, J., Wang, H., Gu, X., Huang, S., Jiang, W. (2016). CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner. Plant Physiology and Biochemistry, 108, 478-487.
Zheng, Y., Ding, Y., Sun, X., Xie, S., Wang, D., Liu, X., Su, L., Wei, W., Pan, L., Zhou, D. X. (2016). Histone deacetylase HDA9 negatively regulates salt and drought stress responsiveness in Arabidopsis. Journal of Experimental Botany, 67, 1703-1713.
Zheng, Y., Ge, J., Bao, C., Chang, W., Liu, J., Shao, J., Liu, X., Su, L., Pan, L., Zhou, D. X. (2020). Histone deacetylase HDA9 and WRKY53 transcription factor are mutual antagonists in regulation of plant stress response. Molecular Plant, 13, 598-611.
Zheng, Z., Qamar, S. A., Chen, Z., Mengiste, T. (2006). Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. The Plant Journal, 48, 592-605.
Zhou, Q. Y., Tian, A. G., Zou, H. F., Xie, Z. M., Lei, G., Huang, J., Wang, C. M., Wang, H. W., Zhang, J. S., Chen, S. Y. (2008). Soybean WRKY‐type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnology Journal, 6, 486-503.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21743-
dc.description.abstractWRKY轉錄因子在鹽逆境下扮演重要的角色,可活化或抑制一些逆境相關基因。此外,WRKY轉錄因子可藉由結合至其下游基因之啟動子上的順式作用元件,進而調控下游基因表達。然而,目前對於阿拉伯芥WRKY25轉錄因子與交互作用蛋白質,例如: 14-3-3和HDA6的交互作用功能尚未明朗;以及在鹽逆境下,WRKY25轉錄因子的下游調控基因仍未清楚。此篇研究中的基因表現結果顯示,DREB1A可能是WRKY25轉錄因子的下游目標基因,因此為了探討在鹽逆境下WRKY25轉錄因子和DREB1A之間的轉錄調控關係。本研究利用qPCR發現,在鹽處理下WRKY25大量表現株中的DREB1A基因表現與野生型相比有較高的趨勢。在染色質免疫沉澱實驗中,發現鹽處理下WRKY25轉錄因子會與DREB1A的啟動子結合。另外在鹽處理中,WRKY25大量表現株及dreb1a 功能獲得型突變株 (微過量表現DREB1A) 與野生型相比有較高的生存率,表示WRKY25及DREB1A具有抗鹽的功能。再者,在轉錄活性分析實驗中也顯示,鹽處理下WRKY25轉錄因子會活化DREB1A基因的轉錄。然而,當轉錄活性分析實驗同時加入WRKY25及14-3-3這兩種效應蛋白時,14-3-3似乎會去抑制DREB1A基因的轉錄。反之,實驗中發現HDA6似乎會去增強WRKY25活化DREB1A基因轉錄的效果。綜合上述結果,阿拉伯芥中會與WRKY25結合的蛋白,如14-3-3及HDA6,可能會影響WRKY25活化DREB1A基因轉錄的能力。zh_TW
dc.description.abstractWRKY transcription factors play important roles in the regulation of salt stress response by activating or repressing several stress-inducible genes. In addition, WRKYs can bind to the cis-acting element W-box of downstream target genes to regulate their genes expression. However, the exact function of 14-3-3 and HDA6 proteins interacting with Arabidopsis WRKY25, and downstream genes targeted by WRKY25 under salt stress are still unclear. In this study, the gene expression analysis showed that DREB1A might be a target of WRKY25. Therefore, I aim to elucidate the transcriptional regulation relationship between WRKY25 and DREB1A in salt stress response. The expression of DREB1A in WRKY25 OE lines was higher than that in the wild type under the salt-treated condition. In chromatin immunoprecipitation (ChIP) assay, WRKY25 appeared to bind to the DREB1A promoter under salt stress. In addition, both WRKY25 OE lines and dreb1a gain-of-function line that slightly overexpressed DREB1A exhibited higher tolerance to salt stress in survival rate. Moreover, the transcriptional activity of DREB1A was also significantly activated by WRKY25 under the salt-treated condition in transactivation assays. However, 14-3-3 seemed to repress the transcriptional activity of DREB1A when WRKY25 and 14-3-3 effectors were both introduced. On the contrary, HDA6 appeared to enhance the transcriptional activity of DREB1A activated by WRKY25. Taken together, the WRKY25 binding proteins, 14-3-3 and HDA6, are suggested to affect the transcription activity of WRKY25 on DREB1A in Arabidopsis.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:44:53Z (GMT). No. of bitstreams: 1
U0001-0601202114594300.pdf: 3744642 bytes, checksum: cd2353497f850d309c0280e86daa8a7d (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents
誌謝 I
摘要 II
Abstract IV
Abbreviations VI
List of figures XII
Supplementary figures XIV
Appendixes XVII
1. Introduction 1
1.1 Biotic and abiotic stresses 1
1.1.1 Responses of plants to salt stress 2
1.1.2 Signal transduction networks in abiotic stress responses 3
1.2 WRKY transcription factors 4
1.2.1 DNA binding motif of WRKY transcription factors 5
1.2.2 Classification of WRKY transcription factors 6
1.2.3 WRKY TFs in plant growth and development 7
1.2.4 WRKY Transcription factors in biotic stress responses 8
1.2.5 WRKY Transcription factors in abiotic stress responses 10
1.2.6 WRKY Transcription factors are potential 14-3-3 interacting proteins................................................................................................... 12
1.2.7 Phosphorylation of WRKY transcription factors 13
1.2.8 Chromatin remodeling proteins as WRKY interacting proteins 15
1.2.9 Downstream target genes of WRKY transcription factors 16
1.2.10 Dehydration-responsive element binding proteins (DREBs) 16
1.3 Project goals 18
2. Materials and Methods 20
2.1 Plant materials 20
2.2 Growth conditions 20
2.3 Generation of constructs for overexpression lines 21
2.4 Arabidopsis transformation by floral dipping 22
2.5 Isolation of T-DNA insertional mutants 23
2.6 RNA extraction and gene expression analysis 24
2.7 Semi-quantitative and quantitative real-time PCR analysis 25
2.8 Phenotyping of survival rates and seed germination rates 25
2.9 Chromatin immunoprecipitation quantitative real-time PCR (ChIP- qPCR) Assays 26
2.10 Isolation of Arabidopsis leaf protoplasts 27
2.11 Bimolecular Fluorescence Complementation (BiFC) 28
2.12 Subcellular localization of WRKY25 29
2.13 Transactivation assay 29
2.14 Purification of recombinant protein 30
2.15 In vitro kinase assay 31
2.16 Statistical analysis 32
3. Results 33
3.1 Isolation of wrky25 mutant and WRKY25 overexpression lines 33
3.2 Induction of WRKY25 in response to salt stress 34
3.3 Gene expression of DREB1A in WRKY25 overexpression lines under salt treatment 34
3.4 Isolation of T-DNA insertional line dreb1a 35
3.5 Comparison of survival rate under salt stress condition 36
3.6 Seed germination rate and vigor in ABA response 37
3.7 Seed germination rate and vigor in salt stress response 37
3.8 Gene expression of WRKY25 in aba2 mutant under salt
treatment 38
3.9 WRKY25 can bind to the promoter of DREB1A in vivo in salt stress response 39
3.10 Protein–protein interactions between WRKY25, 14-3-3 and HDA6…………………………………………………………………………. 40
3.11 Mutation of Thr345 site of WRKY25 to Ala appeared to affect the interaction between WRKY25, 14-3-3 and HDA6 41
3.12 Subcellular localization of site-directed mutagenesis of WRKY25……………………………………………………………… …..42
3.13 Expression of DREB1A might be regulated by WRKY25, 14-3-3 and HDA6 in transactivation assay 42
3.14 HDA6 but not WRKY25 can be phosphorylated by CDPK16 in vitro in a kinase assay 44
4. Discussion 46
4.1 WRKY25 and DREB1A involve in salt stress response 46
4.2 The DREB1A promoter could be bound and regulated by WRKY25 in salt stress condition 50
4.3 Protein–protein interactions between WRKY25, 14-3-3 and HDA6…………………………………………………………………………. 52
5. References 57
Figures 70
Supplementary Figures 91
Appendixes……………………………………………………………………… 118
dc.language.isoen
dc.title探討鹽逆境下阿拉伯芥WRKY25調控DREB1A的表現zh_TW
dc.titleRegulation of DREB1A expression by WRKY25 in Arabidopsis thaliana under salt stressen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee吳克強(Ke-Qiang Wu),謝旭亮(Hsu-Liang Hsieh),鄭貽生(Yi-Sheng Cheng),張孟基(Men-Chi Chang)
dc.subject.keywordWRKY25,DREB1A,鹽逆境,生存率,離層酸,14-3-3,HDA6,zh_TW
dc.subject.keywordWRKY25,DREB1A,salt stress,survival rate,ABA,14-3-3,HDA6,en
dc.relation.page131
dc.identifier.doi10.6342/NTU202100022
dc.rights.note未授權
dc.date.accepted2021-01-08
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
Appears in Collections:植物科學研究所

Files in This Item:
File SizeFormat 
U0001-0601202114594300.pdf
  Restricted Access
3.66 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved