請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21741完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 童國倫(Kuo-Lun Tung) | |
| dc.contributor.author | Yen-Ju Lin | en |
| dc.contributor.author | 林彥儒 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:44:48Z | - |
| dc.date.copyright | 2019-03-19 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-03-05 | |
| dc.identifier.citation | [1]The University of Waikato, Water origins, Science Learning Hub, (2009).
[2]International Desalination Association (IDA), (2018). [3]K.W. Lawson, D.R. Lloyd, Membrane distillation, J. Membr. Sci., 124 (1997) 1-25. [4]A. Alkhudhiri, N. Darwish, N. Hilal, Membrane distillation: A comprehensive review, Desalination, 287 (2012) 2-18. [5]M.P. Godino, L. Peña, C. Rincón, J.I. Mengual, Water production from brines by membrane distillation, Desalination, 108 (1997) 91-97. [6]S.T. Hsu, K.T. Cheng, J.S. Chiou, Seawater desalination by direct contact membrane distillation, Desalination, 143 (2002) 279-287. [7]S. Gunko, S. Verbych, M. Bryk, N. Hilal, Concentration of apple juice using direct contact membrane distillation, Desalination, 190 (2006) 117-124. [8]V.D. Alves, I.M. Coelhoso, Orange juice concentration by osmotic evaporation and membrane distillation: A comparative study, J. Food Eng., 74 (2006) 125-133. [9]M. Tomaszewska, M. Gryta, A.W. Morawski, Study on the concentration of acids by membrane distillation, J. Membr. Sci., 102 (1995) 113-122. [10]L. Francis, N. Ghaffour, A.A. Alsaadi, G.L. Amy, Material gap membrane distillation: A new design for water vapor flux enhancement, J. Membr. Sci., 448 (2013) 240-247. [11]F.A. Banat, J. Simandl, Desalination by membrane distillation: a parametric study, Sep. Sci. Technol., 33 (1998) 201-226. [12]M.C. Garcia-Payo, M.A. Izquierdo-Gil, C. Fernandez-Pineda, Air gap membrane distillation of aqueous alcohol solutions, J. Membr. Sci., 169 (2000) 61-80. [13]F.A. Banat, J. Simandl, Membrane distillation for dilute ethanol separation from aqueous streams, J. Membr. Sci., 163 (1999) 333-348. [14]J. Walton, H. Lu, C. Tumer, S. Solis, H. Hein, Solar and waste heat desalination by membrane distillation, Desalination and Water Purification Research and Development Program Report No. 81, (2004). [15]M. Khayet, Membranes and theoretical modeling of membrane distillation: A review, Adv. Colloid Interface Sci., 164 (2011) 56-88. [16]M.C. Garcia-Payo, C.A. Rivier, I.W. Marison, U.V. Stockar, Separation of binary mixtures by thermostatic sweeping gas membrane distillation: II. Experimental results with aqueous formic acid solutions, J. Membr. Sci., 198 (2002) 197-210. [17]C.C. Yang, Methylmethoxysilane derived hydrophobic polymethylsilsesquioxane aerogel membranes for vacuum membrane distillation applications, Master Thesis, National Taiwan University, (2014). [18]S. Bandini, C. Gostoli, G.C. Sarti, Separation efficiency in vacuum membrane distillation, J. Membr. Sci., 73 (1992) 217-229. [19]K.W. Lawson, D.R. Lloyd, Membrane distillation. I. Module design and performance evaluation using vacuum membrane distillation, J. Membr. Sci., 120 (1996) 111-121. [20]N. Dow, J.H. Zhang, M. Duke, J.D. Li, S.R Gray, E. Ostarcevic, Membrane Distillation of Brine waste, CRC for Water Quality and Treatment Research Report No. 63, (2008). [21]P. Onsekizoglu, Membrane distillation: principle, advances, limitations and future prospects in food industry, S. Zereshki (Ed.), Distillation-Advances from Modelling to Applications, In tech (2012) 233-266. [22]M.S. El-bourawi, Z. Ding, R. Ma, M. Khayet, A framework for better understanding membrane distillation separation process, J. Membr. Sci., 285 (2006) 4-29. [23]A. El-Abbassi, A. Hafidi, M.C. García-Payo, M. Khayet, Concentration of olive mill wastewater by membrane distillation for polyphenols recovery, Desalination, 245 (2009) 670-674. [24]P. Termpiyakul, R. Jiraratananon, S. Srisurichan, Heat and mass transfer characteristics of a direct contact membrane distillation process for desalination, Desalination, 177 (2005) 133-141. [25]S. Cerneaux, I. Strużyńska, W.M. Kujawski, M. Persin, A. Larbot, Comparison of various membrane distillation methods for desalination using hydrophobic ceramic membranes, J. Membr. Sci., 337 (2009) 55-60. [26]E. Curcio, E. Drioli, Membrane distillation and related operations — a review, Sep. Purif. Rev., 34 (2005) 35-86. [27]F. Laganà, G. Barbieri, E. Drioli, Direct contact membrane distillation: modelling and concentration experiments, J. Membr. Sci., 166 (2000) 1-11. [28]Y. Fujii, S. Kigoshi, H. Iwatani, M. Aoyama, Selectivity and characteristics of direct contact membrane distillation type experiments. I. Permeability and selectivity through dried hydrophobic fine porous membranes, J. Membr. Sci., 72 (1992) 53-72. [29]M. Gryta, Concentration of saline wastewater from the production of heparine, Desalination, 129 (2000) 35-44. [30]M. Qtaishat, T. Matsuura, B. Kruczek, M. Khayet, Heat and mass transfer analysis in direct contact membrane distillation, Desalination, 219 (2008) 272-292. [31]J. Phattaranawik, R. Jiraratananon, A.G. Fane, Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation, J. Membr. Sci., 215 (2003) 75-85. [32]M. Khayet, A. Velázquez, J.I. Mengual, Modelling mass transport through a porous partition: effect of pore size distribution, J. Non-Equilib. Thermodyn., 29 (2004) 279-299. [33]H.W. Fan, Y.L. Peng, Application of PVDF membranes in desalination and comparison of the VMD and DCMD processes, Chem. Eng. Sci., 79 (2012) 94-102. [34]F.A. Banat, J. Simandl, Theoretical and experimental study in membrane distillation, Desalination, 95 (1994) 39-52. [35]N. Bhardwaj, S.C. Kundu, Electrospinning: A fascinating fiber fabrication technique, Biotechnol. Adv., 28 (2010) 325-347. [36]Y.M. Shin, M.M. Hohman, M.P. Brenner, G.C. Rutledge, Experimental characterization of electrospinning: the electrically forced jet and instabilities, Polymer, 42 (2001) 09955-09967. [37]J. Doshi, D.H. Reneker, Electrospinning process and applications of electrospun fibers, J. Electrostatics, 35 (1995) 151-160. [38]A. Baji, Y.W. Mai, S.C. Wong, M. Abtahi, P. Chen, Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties, Composites Sci. Technol., 70 (2010) 703-718. [39]S.H. Tan, R. Inai, M. Kotaki, S. Ramakrishna, Systematic parameter study for ultra-fine fiber fabrication via electrospinning process, Polymer, 46 (2005) 6128-6134. [40]W.J. Liu, C. Huang, X.G. Jin, Electrospinning of grooved polystyrene fibers: effect of solvent systems, Nanoscale Res. Lett., 10 (2015) 1-10. [41]W.W. Wang, Fluorine-free and Hydrophobic Organic/Inorganic Nanofibrous Membranes for Carbon Dioxide Absorption, Master Thesis, Chung Yuan Christian University, (2017). [42]C.X. Zhang, X.Y. Yuan, L.L. Wu, Y. Han, J. Sheng, Study on morphology of electrospun poly(vinyl alcohol) mats, European Polymer Journal, 41 (2005) 423-432. [43]K. Garg, G.L. Bowlin, Electrospinning jets and nanofibrous structures, Biomicrofluidics, 5 (2011) 013403. [44]C. Wang, C.H. Hsu, J.H. Lin, Scaling laws in electrospinning of polystyrene solutions, Macromolecules, 39 (2006) 7662-7672. [45]P. Lu, Y. Xia, Maneuvering the internal porosity and surface morphology of electrospun polystyrene yarns by controlling the solvent and relative humidity, Langmuir, 29 (2013) 7070-7078. [46]S.Q. Huan, G.X. Liu, G.P. Han, W.L. Cheng, Z.Y. Fu, Q.L. Wu, Q.W. Wang, Effect of experimental parameters on morphological, mechanical and hydrophobic properties of electrospun polystyrene fibers, Materials, 8 (2015) 2718-2734. [47]H. Ke, E. Feldman, P. Guzman, J. Cole, Q.F. Wei, B. Chu, A. Alkhudhiri, R. Alrasheed, B.S. Hsiao, Electrospun polystyrene nanofibrous membranes for direct contact membrane distillation, J. Membr. Sci., 515 (2016) 86-97. [48]X. Li, C. Wang, Y. Yang, X.F. Wang, M.F. Zhu, B.S. Hsiao, Dual-biomimetic superhydrophobic electrospun polystyrene nanofibrous membranes for membrane distillation, ACS Appl. Mater. Inter., 6 (2014) 2423-2430. [49]Y.F. Lin, W.W. Wang, C.Y. Chang, Environmentally sustainable, fluorine-free and waterproof breathable PDMS/PS nanofibrous membranes for carbon dioxide capture, J. Mater. Chem. A, 6 (2018) 9489-9497. [50]E. Cho, C. Kim, J.K. Kook, Y.I. Jeong, J.H. Kim, Y.A. Kim, C.H. Hwang, Fabrication of electrospun PVDF nanofiber membrane for Western blot with high sensitivity, J. Membr. Sci., 389 (2012) 349-354. [51]Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Sci. Technol., 63 (2003) 2223-2253. [52]L.D. Tijing, Y.C. Woo, W.G. Shim, T. He, J.S. Choi, S.H. Kim, H.K. Shon, Superhydrophobic nanofiber membrane containing carbon nanotubes for high-performance direct contact membrane distillation, J. Membr. Sci., 502 (2016) 158-170. [53]L.D. Tijing, Y.C. Woo, M.A.H. Johir, J.S. Choi, H.K. Shon, A novel dual-layer bicomponent electrospun nanofibrous membrane for desalination by direct contact membrane distillation, Chem. Eng. J., 256 (2014) 155-159. [54]J.A. Prince, G. Singh, D. Rana, T. Matsuura, V. Anbharasi, T.S. Shanmugasundaram, Preparation and characterization of highly hydrophobic poly(vinylidene fluoride) – clay nanocomposite nanofiber membranes (PVDF–clay NNMs) for desalination using direct contact membrane distillation, J. Membr. Sci., 397-398 (2012) 80-86. [55]M.W. Yao, Y.C. Woo, L.D. Tijing, W.G. Shim, J.S. Choi, S.H. Kim, H.K. Shon, Effect of heat-press conditions on electrospun membranes for desalination by direct contact membrane distillation, Desalination, 378 (2016) 80-91. [56]Y. Liao, C.H. Loh, R. Wang, A.G. Fane, Electrospun superhydrophobic membranes with unique structures for membrane distillation, ACS Appl. Mater. Inter., 6 (2014) 16035-16048. [57]X. Li, X.F. Yu, C. Cheng, L. Deng, M. Wang, X.F. Wang, Electrospun superhydrophobic organic/inorganic composite nanofibrous membranes for membrane distillation, ACS Appl. Mater. Inter., 7 (2015) 21919-21930. [58]Y. Liao, R. Wang, A.G. Fane, Fabrication of bioinspired composite nanofiber membranes with robust superhydrophobicity for direct contact membrane distillation, Env. Sci. Technol., 48 (2014) 6335-6341. [59]Y. Liao, R. Wang, M. Tian, C.Q. Qiu, A.G. Fane, Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation, J. Membr. Sci., 425–426 (2013) 30-39. [60]M. Essalhi, M. Khayet, Self-sustained webs of polyvinylidene fluoride electrospun nano-fibers: effects of polymer concentration and desalination by direct contact membrane distillation, J. Membr. Sci., 454 (2014) 133-143. [61]L.F. Ren, F. Xia, J.H. Shao, X.F. Zhang, J. Li, Experimental investigation of the effect of electrospinning parameters on properties of superhydrophobic PDMS/PMMA membrane and its application in membrane distillation, Desalination, 404 (2017) 155-166. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21741 | - |
| dc.description.abstract | 為了降低淡水的生產成本,本研究發展超疏水性有機/無機奈米纖維薄膜並藉由直接接觸式薄膜蒸餾(Direct contact membrane distillation, DCMD)法來進行海水淡化(Desalination)。超疏水性有機/無機奈米纖維薄膜主要是選用有機高分子之聚苯乙烯(Polystyrene, PS)與有機/無機高分子之聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)作為材料,以靜電紡絲技術(Electrospinning)於聚對苯二甲酸乙二酯(PET)不織布上製備出具有超疏水性、高孔隙度之PDMS/PS奈米纖維薄膜,並將其薄膜作為高溫3.5 (wt%)鹽水進料端與低溫滲透端的接觸介面,以提供巨大的接觸面積供高溫3.5 (wt%)鹽水進料端的水蒸氣滲透至低溫滲透端。由本實驗結果證明,在溶劑組成比例四氫呋喃(Tetrahydrofuran, THF)/二甲基乙醯胺(Dimethylacetamide, DMAC)為1/2、PS溶液濃度為20 (wt%)、PDMS/(PS+PDMS)質量比值為0.4、紡絲溶液體積為8 (mL)、電壓強度為17.5 (kV)、工作距離為15 (cm)、進料流速為1.0 (mL/hr)及滾筒收集器轉速為600 (rpm)下所製備的PDMS/PS 奈米纖維薄膜,其在溫差60 (°C)、流速0.2 (LPM)及15.5(hr)的持續操作下,擁有42.8 (kg/m2hr)的高平均滲透通量及99.98 (%)的高脫鹽率。因此,PDMS/PS奈米纖維薄膜在海水淡化程序中具有實際應用的可行性。 | zh_TW |
| dc.description.abstract | In order to reduce the production cost of fresh water, this study developed a superhydrophobic organic/inorganic nanofibrous membrane and carried out desalination by the direct contact membrane distillation (DCMD). The superhydrophobic organic/inorganic nanofibrous membrane mainly selected the polystyrene (PS) of organic polymer and the polydimethylsiloxane (PDMS) of organic/inorganic polymer as material, and prepared the superhydrophobic and high porosity PDMS/PS nanofibrous membrane on the polyethylene terephthalate (PET) nonwoven by electrospinning. The PDMS/PS nanofibrous membrane was used as a contact interface between the high temperature feed side of 3.5(wt%) NaCl solution and the low temperature permeate side to provide a large contact area for the vapor of high temperature feed side to permeate to the low temperature permeate side. The results of this study proved that when the solvent ratio of tetrahydrofuran (THF)/dimethylacetamide (DMAC) was 1/2, the PS solution concentration was 20 (wt%), the PDMS/(PS+PDMS) mass ratio was 0.4, the spinning solution volume was 8 (mL), voltage was 17.5 (kV), working distance was 15 (cm), feed flow rate was 1.0 (mL/hr) and the rotating rate of drum collector was 600 (rpm), according to the above parameters which prepared the PDMS/PS nanofibrous membrane. It had the high average permeate flux rate of 42.8 (kg/m2hr) and the high salt rejection rate of 99.98 (%) under temperature difference of 60 (°C), flow rates of 0.2 (LPM) and continuous operation of 15.5 (hr). Therefore, the PDMS/PS nanofibrous membranes have the feasibility of practical application in desalination process. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:44:48Z (GMT). No. of bitstreams: 1 ntu-108-R05524041-1.pdf: 5888349 bytes, checksum: 3398d2deeaf327fef439c4f0ce8863f0 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv Contents v List of Figures vii List of Tables xiii Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2-1 Membrane distillation 3 2-1-1 The configurations of membrane distillation 3 2-1-2 The characteristics and advantages of membrane distillation 8 2-1-3 The modules of membrane 10 2-1-4 The mechanisms of membrane distillation 12 2-1-5 The application of membrane distillation in desalination 18 2-2 Electrospinning 23 2-2-1 The theory of electrospinning 23 2-2-2 The influence parameter of electrospinning 24 2-2-3 The preparation of PDMS/PS electrospun nanofiber 32 2-2-4 The application of electrospun nanofiber 36 Chapter 3 Experimental Methods and Equipment 38 3-1 Experimental materials 38 3-1-1 Electrospun nanofibrous membrane 38 3-1-2 Membrane distillation 41 3-2 Experimental equipment 42 3-2-1 Electrospinning equipment system 42 3-2-2 Membrane distillation equipment system 46 3-3 Experimental methods 52 3-3-1 Preparation of electrospun nanofibrous membrane 52 3-3-2 Membrane distillation process 55 3-4 Characterization 57 3-4-1 Surface morphology and fiber diameter 57 3-4-2 Average pore size, pore size distribution and porosity 57 3-4-3 Identification of functional group 58 3-4-4 Elemental analysis 59 3-4-5 Water droplet contact angle 60 3-4-6 Thickness measurement 60 Chapter 4 Results and Discussion 61 4-1 The influence of drum collector rotating rate 61 4-2 The influence of adding PDMS 64 4-3 The influence of nanofibrous membrane thickness 70 4-4 The influence of different PDMS concentration 77 Chapter 5 Conclusions 90 References 92 | |
| dc.language.iso | en | |
| dc.title | 超疏水性有機/無機奈米纖維薄膜及其於直接接觸式薄膜蒸餾之應用 | zh_TW |
| dc.title | Superhydrophobic Organic/Inorganic Nanofibrous Membranes for Direct Contact Membrane Distillation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳嘉文(Chia-Wen Wu),林義?(Yi-Feng Lin) | |
| dc.subject.keyword | 聚苯乙烯,聚二甲基矽氧烷,奈米纖維薄膜,靜電紡絲技術,直接接觸式薄膜蒸餾,海水淡化, | zh_TW |
| dc.subject.keyword | Polystyrene,Polydimethylsiloxane,Nanofibrous membrane,Electrospinning,Direct contact membrane distillation,Desalination, | en |
| dc.relation.page | 98 | |
| dc.identifier.doi | 10.6342/NTU201900636 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2019-03-06 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 5.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
