Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21732
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李紅春(Hong-Chun Li)
dc.contributor.authorChia-Yen Linen
dc.contributor.author林佳燕zh_TW
dc.date.accessioned2021-06-08T03:44:25Z-
dc.date.copyright2021-01-20
dc.date.issued2020
dc.date.submitted2021-01-07
dc.identifier.citationAharon, P., (1983). 140,000-yr. isotope climatic record from raised coral reefs in New Guinea, Nature, 304(5928), 720-723. doi: 10.1038/304720a0
Aharon, P., (1991). Recorders of reef environment histories: stable isotopes in corals, giant clams, and calcareous algae. Coral Reefs, 10, 71-90.
Akers, P. D., Brook, G. A., Railsback, L. B., Liang, F., Iannone, G., Webster, J. W., Edwards, R. L. (2016). An extended and higher-resolution record of climate and land use from stalagmite MC01 from Macal Chasm, Belize, revealing connections between major dry events, overall climate variability, and Maya sociopolitical changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 459, 268-288. doi:10.1016/j.palaeo.2016.07.007
Andrews, A. H., Asami, R., Iryu, Y., Kobayashi, D. R., Camacho, F. (2016). Bomb-produced radiocarbon in the western tropical Pacific Ocean: Guam coral reveals operation-specific signals from the Pacific Proving Grounds. Journal of Geophysical Research: Oceans, 121(8), 6351-6366. doi:10.1002/2016jc012043
Andrews, A. H., Siciliano, D., Potts, D. C., DeMartini, E. E., Covarrubias, S. (2016). Bomb Radiocarbon and the Hawaiian Archipelago: Coral, Otoliths, and Seawater. Radiocarbon, 58(3), 531-548. doi:10.1017/rdc.2016.32
Andrews, J. E., Carolin, S. A., Peckover, E. N., Marca, A., Al-Omari, S., Rowe, P. J. (2020). Holocene stable isotope record of insolation and rapid climate change in a stalagmite from the Zagros of Iran. Quaternary Science Reviews, 241. doi:10.1016/j.quascirev.2020.106433
Aharon, P., Chappell, J. (1986). Oxygen isotopes, sea level changes and the temperature history of a coral reef environment in New Guinea over the last 105 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 56(3–4), 337-379. doi: 10.1016/0031-0182(86)90101-X
Aryal, S., Gaire, N. P., Pokhrel, N. R., Rana, P., Sharma, B., Kharal, D. K., Bräuning, A. (2020). Spring Season in Western Nepal Himalaya is not yet Warming: A 400-Year Temperature Reconstruction Based on Tree-Ring Widths of Himalayan Hemlock (Tsuga dumosa). Atmosphere, 11(2). doi:10.3390/atmos11020132
Aubert, A., Lazareth, C. E., Cabioch, G., Boucher, H., Yamada, T., Iryu, Y., Farman, R. (2009). The tropical giant clam Hippopus hippopus shell, a new archive of environmental conditions as revealed by sclerochronological and δ18O profiles. Coral Reefs, 28(4), 989-998. doi:10.1007/s00338-009-0538-0
Ayling, B. F., Chappell, J., Gagan, M. K., McCulloch, M. T. (2015). ENSO variability during MIS 11 (424–374 ka) from Tridacna gigas at Huon Peninsula, Papua New Guinea. Earth and Planetary Science Letters, 431, 236-246. doi:10.1016/j.epsl.2015.09.037
Batenburg, S. J., Reichart, G.-J., Jilbert, T., Janse, M., Wesselingh, F. P., Renema, W. (2011). Interannual climate variability in the Miocene: High resolution trace element and stable isotope ratios in giant clams. Palaeogeography, Palaeoclimatology, Palaeoecology, 306(1-2), 75-81. doi:10.1016/j.palaeo.2011.03.031
Beck, J. W., Edwards, R. L., Ito, E., Taylor, F. W., Recy, J., Rougerie, F., Joannot, P., Henin, C. (1992). Sea-Surface Temperature from Coral Skeletal Strontium/Calcium Ratios. Science, 257(5070), 644-647. doi: 10.1126/science.257.5070.644
Belda, C. A., Lucas, J. S., Yellowlees, D. (1993). Nutrient limitation in the giant clam-zooxanthellae symbiosis: effects of nutrient supplements on growth of the symbiotic partners. Marine Biology, 117, 655–664. doi:10.1007/BF00349778.
Bemis, B. E., Spero, H. J., Bijma, J., Lea, D. W. (1998). Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations. Paleoceanography, 13(2), 150–160. doi: 10.1029/98PA00070
Bien, G. S., Rakestraw, N. W., Suess, H. E. (2016). Radiocarbon Concentration in Pacific Ocean Water. Tellus, 12(4), 436-443. doi:10.3402/tellusa.v12i4.9413
Bonham, K. (1965). Growth Rate of Giant Clam Tridacna gigas at Bikini Atoll as Revealed by Radioautography. Science, 149(3681), 300-302. doi:10.1126/science.149.3681.300
Brigaud, B., Pucéat, E., Pellenard, P., Vincent, B., Joachimski, M.M. (2008). Climatic fluctuations and seasonality during the Late Jurassic (Oxfordian–Early Kimmeridgian) inferred from δ18O of Paris Basin oyster shells. Earth and Planetary Science Letters, 273(1–2), 58-67. doi:10.1016/j.epsl.2008.06.015
Broecker, W. S., Peng, T.-H., Ostlund, G., Stuiver, M. (1985). The distribution of bomb radiocarbon in the ocean. Journal of Geophysical Research, 90(C4). doi:10.1029/JC090iC04p06953
Bowman, S. (1990). Radiocarbon dating . In Vol. 1.
Chappell, J., Polach, H. A. (1972). Some effects of partial recrystallisation on 14C dating Late Pleistocene corals and molluscs, Quaternary Research, 2(2), 244-252. doi: 10.1016/0033-5894(72)90042-7
Chen, J.-M., Li, T., Shih, C.-F. (2007). Fall Persistence Barrier of Sea Surface Temperature in the South China Sea Associated with ENSO*. Journal of Climate, 20(2), 158-172. doi:10.1175/jcli4000.1
Chen, Q. (2011). The protection of biodiversity in the South China Sea. Biodiversity Science, 19(6), 834-836. doi: 10.3724/SP.J.1003.2011.03127
Cohen,A. L., Layne, G. D., Hart, S. R., Lobel, P.S. (2001). Kinetic control of skeletal Sr/Ca in a symbiotic coral: Implications for the paleotemperature proxy. Paleoceanography and Paleoclimatology, 16(1), 20-26. doi:10.1029/1999PA000478
Corrège, T. (2006). Sea surface temperature and salinity reconstruction from coral geochemical tracers. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2–4), 408-428. doi: 10.1016/j.palaeo.2005.10.014
Craig, H. Gordon, L. I. (1965). Deuterium and oxygen-18 variations in the ocean and marine atmosphere. Stable isotopes in oceanographic studies and palaeotemperatures, 1-122.
Druffel, E. M., Linick, T. W. (1978). Radiocarbon in annual coral rings of Florida. Geophysical Research Letters, 5(11), 913-916. doi:10.1029/GL005i011p00913
Druffel, E. M., Suess, H. E. (1983). On the radiocarbon record in banded corals: Exchange parameters and net transport of 14CO2 between atmosphere and surface ocean. JGR: Oceans, 88(C2), 1271-1280. doi:10.1029/JC088iC02p01271
Druffel, E. M., Griffin, S., Guilderson, T. P., Kashgarian, M., Southon, J., Schrag, D. P. (2001). Changes of Subtropical North Pacific Radiocarbon and Correlation with Climate Variability. Radiocarbon, 43(1), 15-25. doi:10.1017/S0033822200031593
Druffel, E. M. (2002). Radiocarbon in Corals: Records of the Carbon Cycle, Surface Circulation and Climate. Oceanography, 15, 122-127. doi:10.5670/oceanog.2002.43
Elliot, M., Welsh, K., Chilcott, C., McCulloch, M., Chappell, J., Ayling, B. (2009). Profiles of trace elements and stable isotopes derived from giant long-lived Tridacna gigas bivalves: Potential applications in paleoclimate studies. Palaeogeography, Palaeoclimatology, Palaeoecology, 280(1-2), 132-142. doi:10.1016/j.palaeo.2009.06.007
Fairbanks, R.G., Evans, M.N., Rubenstone, J.L., Mortlock, R.A., Broad, K., Moore, M.D., Charles, C.D. (1997). Evaluating climate indices and their geochemical proxies measured in corals. Coral Reefs, 16, S93–S100. doi:10.1007/s003380050245
Finkenbinder, M. S., Abbott, M. B., Steinman, B. A. (2016). Holocene climate change in Newfoundland reconstructed using oxygen isotope analysis of lake sediment cores. Global and Planetary Change, 143, 251-261. doi:10.1016/j.gloplacha.2016.06.014
Gillikin, D. P., Lorrain, A., Navez, J., Taylor, J. W., André, L., Keppens, E., Dehairs, F. (2005). Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells. Geochemistry, Geophysics, Geosystems, 6(5), n/a-n/a. doi:10.1029/2004gc000874
Gray, W. R., Evans, D. (2019). Nonthermal Influences on Mg/Ca in Planktonic Foraminifera: A Review of Culture Studies and Application to the Last Glacial Maximum. Paleoceanography and Paleoclimatology, 34(3), 306-315. doi:10.1029/2018pa003517
Griffiths, C. L., Klumpp, D. W. (1996). Relationships between size, mantle area and zooxanthellae numbers in five species of giant clam (Tridacnidae). MEPS, 137, 139-147. doi:10.3354/meps137139
Grossman, E.L., Ku, T. L. (1986). Oxygen and carbon isotope fractionation in biogenic aragonite: Temperature effects. Chemical Geology: Isotope Geoscience section, 59, 59-74. doi: 10.1016/0168-9622(86)90057-6
Grottoli, A. G., Eakin, C. M. (2007). A review of modern coral δ18O and Δ14C proxy records. Earth-Science Reviews, 81(1-2), 67-91. doi:10.1016/j.earscirev.2006.10.001
Grottoli, A. G., Gille, S. T., Druffel, E. R. M., Dunbar, R. B. (2003). Decadal Timescale Shift in the 14C Record of a Central Equatorial Pacific Coral. RADIOCARBON, 45(1), 91-99. doi:10.1017/S0033822200032422
Guilderson, T. P., Schrag, D. P. (1988). Abrupt Shift in Subsurface Temperatures in the Tropical Pacific Associated with Changes in El Niño. Science 281(5374), 240-243. doi:10.1126/science.281.5374.240
Guilderson, T. P., Schrag, D. P., Kashgarian, M., Southon, J. (1988). Radiocarbon variability in the western equatorial Pacific inferred from a high‐resolution coral record from Nauru Island. JGR: Oceans, 103(C11), 24641-24650. doi: 10.1029/98JC02271
Hamner, W. M., Jones M. S. (1976). Distribution, burrowing, and growth rates of the clam Tridacna crocea on interior reef flats. Oecologia, 24, 207-227.
Hayes, A., Kucera, M., Kallel, N., Sbaffi, L., Rohling, E. J. (2005). Glacial Mediterranean sea surface temperatures based on planktonic foraminiferal assemblages. Quaternary Science Reviews, 24(7-9), 999-1016. doi:10.1016/j.quascirev.2004.02.018
Hean, R. L., Cacho, O. J. (2003). A growth model for giant clams Tridacna crocea and T. derasa. Ecological Modelling, 163(1-2), 87-100. doi:10.1016/s0304-3800(02)00400-3
Henkes, G. A., Passey, P. H., Grossman, E. L., Shenton, B. J.,Yancey, T. E., Pérez-Huertae, A. (2018). Temperature evolution and the oxygen isotope composition of Phanerozoic oceans from carbonate clumped isotope thermometry. Earth and Planetary Science Letters, 490(15), 40-50. doi: 10.1016/j.epsl.2018.02.001
Hirabayashi, S., Yokoyama, Y., Suzuki, A., Miyairi, Y., Aze, T. (2017). Multidecadal oceanographic changes in the western Pacific detected through high-resolution bomb-derived radiocarbon measurements on corals. Geochemistry, Geophysics, Geosystems, 18(4), 1608-1617. doi:10.1002/2017gc006854
Hideshima, S., Matsumoto, E., Abe, O., and Kitagawa, H. (2016). Northwest Pacific Marine Reservoir Correction Estimated from Annually Banded Coral from Ishigaki Island, Southern Japan. Radiocarbon, 43(2A), 473-476. doi: 10.1017/S0033822200038352
Hoegh-Guldberg, O., Smith, G. F. (1989). The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. Journal of Experimental Marine Biology and Ecology, 129(3), 279-303. doi:10.1016/0022-0981(89)90109-3
Hong, A., Hong, Y., Wang, Q., Ke, J. (1997). Distributive characteristics of O isotope of the northeastern South China Sea in the summer of 1994. Tropic Oceanol, 16(2), 82-90
Hu, R., Piotrowski, A. M., Bostock, H. C., Crowhurst, S., Rennie, V. (2016). Variability of neodymium isotopes associated with planktonic foraminifera in the Pacific Ocean during the Holocene and Last Glacial Maximum. Earth and Planetary Science Letters, 447, 130-138. doi:10.1016/j.epsl.2016.05.011
Hu, J., Kawamura, H., Hong, H., Qi, Y. (2000). A Review on the Currents in the South China Sea: Seasonal Circulation, South China Sea Warm Current and Kuroshio Intrusion. Journal of Oceanography 56(6), 607-624. doi: 10.1023/A:1011117531252
Hu, Y., Sun, X., Cheng, H., Yan, H. (2020). Evidence from giant-clam δ18O of intense El Ninõ–Southern Oscillation-related variability but reduced frequency 3700 years ago. Climate of the past, 16(2), 597-610. doi:10.5194/cp-16-597-2020
Hua, Q., Barbetti, M. (2016). Review of Tropospheric Bomb 14C Data for Carbon Cycle Modeling and Age Calibration Purposes. Radiocarbon, 46(3), 1273-1298. doi:10.1017/s0033822200033142
Hut, G. (1987). Consultants' group meeting on stable isotope reference samples for geochemical and hydrological investigations. International Atomic Energy Agency, 18(18).
Jones, D. S., Williams,D. F., Romanek, C.S. (1986). Life History of Symbiont-Bearing Giant Clams from Stable Isotope Profiles. Science, 231(4733), 46-48. doi:10.1126/science.231.4733.46
Kinsman, D. J. J., Holland, H. D., (1969). The co-precipitation of cations with CaCO3—IV. The co-precipitation of Sr2+ with aragonite between 16° and 96°C. Geochimica et Cosmochimica Acta, 33(1), 1-17. doi: 10.1016/0016-7037(69)90089-1
Klumpp, D. W., Griffiths, C. L. (1994). Contributions of phototrophic and heterotrophic nutrition to the metabolic and growth requirements of four species of giant clam (Tridacnidae). Marine Ecology Progress Series,115(1/2), 103-115. doi: 10.3354/meps115103
Konishi, K., Tanaka, T., Sakanoue, M., (1981). Secular variation of radiocarbon concentrations in seawater: sclerochronological approach. International Coral Reef Symposium, 181–185.
Kubota, K., Shirai, K., Murakami-Sugihara, N., Seike, K., Hori, M., Tanabe, K. (2017). Annual shell growth pattern of the Stimpson's hard clam Mercenaria stimpsoni as revealed by sclerochronological and oxygen stable isotope measurements. Palaeogeography, Palaeoclimatology, Palaeoecology, 465, 307-315. doi:10.1016/j.palaeo.2016.05.016
Kuo, Y., C., Tseng, Y., H. (2020). Impact of ENSO on the South China Sea during ENSO decaying winter–spring modeled by a regional coupled model (a new mesoscale perspective. Ocean modelling, 152, 101655. doi: 0.1016/j.ocemod.2020.101655
Levin, I., Hesshaimer, V. (2000). Radiocarbon – A Unique Tracer of Global Carbon Cycle Dynamics. Radiocarbon, 42(1), 69 – 80. doi:10.1017/S0033822200053066
Li, L., Li, F. Q., Su, J., Xu, J. P. (2002). Aaalysis on water masses in the South China Sea in summer and winter of 1988. Oceanologia et limnologia sinica, 33(4), 393-401.
Liu, Q., Feng, M., Wang, D. (2011). ENSO-induced interannual variability in the southeastern South China Sea. Journal of Oceanography, 67(1), 127-133. doi:10.1007/s10872-011-0002-y
Linnaeus, C. (1758). Systema Naturae per Regna tria Naturae, secundum Classes, Ordines, Genera Species, cum Characteribus, Differentiis, Synonymis, Locis. Tomus I. Editio decima. Holmiae:Laur. Salvius. 824 pp.
Lucas, J. S. (1988). Giant clams: description, distribution and life history. In Copland, J. W. J. S. Lucas (eds), Giant clams in Asia and the Pacific, ACIAR Monograph, 9, 21–32.
Lucas, J. S. (2008). The biology, exploitation, and mariculture of giant clams (Tridacnidae). Reviews in Fisheries Science, 2(3), 181-223. doi:10.1080/10641269409388557
McGregor, H.V., Gagan, M. K. (2003). Diagenesis and geochemistry of porites corals from Papua New Guinea: Implications for paleoclimate reconstruction. Geochimica et Cosmochimica Acta, 67(12), 2147-2156. doi: 10.1016/S0016-7037(02)01050-5
Mitsuguchi, T., Matsumoto, E., Abe, O., Uchida, T., Isdale, P. J. (1996). Mg/Ca Thermometry in Coral Skeletons. Science, 274(5289), 961-963. doi: 10.1126/science.274.5289.961
Mohtar, A. T., Hughen, K. A., Goodkin, N. F., Streanga, I.-M., Ramos, R. D., Samanta, D., Switzer, A. D. (2021). Coral-based proxy calibrations constrain ENSO-driven sea surface temperature and salinity gradients in the Western Pacific Warm Pool. Palaeogeography, Palaeoclimatology, Palaeoecology, 561. doi:10.1016/j.palaeo.2020.110037
Norton, J. H., Shepherd, M. A., Long, H. M., Fitt, W. K. (1992). The Zooxanthellal Tubular System in the Giant Clam. Biological Bulletin, 183(3), 503-506.
Nydal, R. (1968). Further investigation on the transfer of radiocarbon in nature. Journal of Geophysical Research, 73(12), 3617-3635. doi:10.1029/JB073i012p03617
Oba, T. (1988). Paleoceanographic information obtained by the isotopic measurement of individual foraminiferal specimens. Asian Marine Geology, Shanghai, September 7–10. 169– 180.
Othman, A. S. B., Goh, G. H. S., Todd, P. A. (2010) The distribution and status of giant clams (family Tridacnidae)-a short review. The Raffles Bulletin of Zoology, 58(1), 103–111.
Opdyke, B. N., Walker, J. C. G. (1992). Return of the coral reef hypothesis: Basin to shelf partitioning of CaCO3 and its effect on atmospheric CO2. Geology, 20(8), 733–736. doi: 10.1130/0091-7613(1992)020<0733:ROTCRH>2.3.CO;2
Ourbak, T., Corrège, T., Malaizé, B., Le Cornec, F., Charlier, K., Peypouquet, J. P. (2006) A high-resolution investigation of temperature, salinity, and upwelling activity proxies in corals. Geochem Geophys Geosyst, 7(3), 1-13. doi:10.1029/2005GC001
Pearson, R. G., Munro. J. L. (1991). Growth, mortality and recruitment rates of giant clams, Tridacna gigas and T. derasa, at Michaelmas Reef, central Great Barrier Reef, Australia. Australian Journal of Marine and Freshwater Research, 42(3), 241 – 262. doi:10.1071/MF9910241
Qu, T. D., Song, Y. T., Yamagata, T. (2009). An introduction to the South China Sea throughflow: Its dynamics, variability, and application for climate. Dynamics of Atmospheres and Oceans, 47(1–3), 3–14. doi:10.1016/j.dynatmoce.2008.05.001
Qu, T., Kim, Y., Y., Yaremchuk, M., Tozuka T., Ishida, A., Yamagata, T. (2004). Can Luzon Strait Transport Play a Role in Conveying the Impact of ENSO to the South China Sea? J. Climate, 17(18), 3644–3657. doi:10.1175/1520-0442(2004)017<3644:CLSTPA>2.0.CO;2
Quinn, T. M., Taylor, F. W. (2006). SST artifacts in coral proxy records produced by early marine diagenesis in a modern coral from Rabaul, Papua New Guinea. Geophysical Research Letters, 33(4), L04601 . doi: 10.1029/2005GL024972
Railsback, L. B., Anderson, T. F., Ackerly, S. C., Cisne, J. L. (1989). Paleoceanographic modeling of temperature‐salinity profiles from stable isotopic data. Paleoceanography and Paleoclimatology, 4(5). 585-591. doi:10.1029/PA004i005p00585
Ridgwell, A. J., Watson, A. J., Maslin, M. J., Kaplan, J. O. (2003). Implications of coral reef buildup for the controls on atmospheric CO2 since the Last Glacial Maximum. Paleoceanography and Paleoclimatology, 18(4), 1083. doi:10.1029/2003PA000893
Richter, C., Roa-Quiaoit, H., Jantzen, C., Al-Zibdah, M., Kochzius, M. (2008). Collapse of a new living species of giant clam in the Red Sea. Current Biology, 18(17), 1349-1354. doi:10.1016/j.cub.2008.07.060
Romanek, C. S., Jones, D. S., Williams, D. F., Krantz, D. E., Radtke, R. (1987). Stable isotopic investigation of physiological and environmental changes recorded in shell carbonate from the giant clam Tridacna maxima. Marine Biology, 94, 385–393. doi:10.1007/BF00428244
Romanek, C. S., Grossman, E. L. (1989). Stable isotope profiles of Tridacna maxima as environmental indicators. PALAIOS, 4(5), 402–413. doi:10.2307/3514585
Rong, Z., Liu, Y., Zong, H., Chen,Y. (2007) Interannual sea level variability in the South China Sea and its response to ENSO. Global and Planetary Change, 55(4), 257-272. doi: 10.1016/j.gloplacha.2006.08.001
Rosewater, J. (1965). The family Tridacnidae in the Indo-Pacific. Indo-Pacific Mollusca, 1, 347–394.
Sano, Y., Kobayashi, S., Shirai, K., Takahata, N., Matsumoto, K., Watanabe, T., Iwai, K. (2012). Past daily light cycle recorded in the strontium/calcium ratios of giant clam shells. Nat Commun, 3, 761. doi:10.1038/ncomms1763
Schofield, M. R., Barker, R. J., Gelman, A., Cook, E. R., Briffa, K. R. (2016). A Model-Based Approach to Climate Reconstruction Using Tree-Ring Data. Journal of the American Statistical Association, 111(513), 93-106. doi:10.1080/01621459.2015.1110524
Schilmana, B., Bar-Matthewsa, M., Almogi-Labina, M., Luz, B. (2001). Global climate instability reflected by Eastern Mediterranean marine records during the late Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 176(1–4), 157-176. doi: 10.1016/S0031-0182(01)00336-4
Shao, D., Yan, H., Wang, Y., Sun, L. (2012). High resolution Sr /Ca profiles of three Tridacna specimens and their potential as sea surface temperature proxy. Journal of University of Science and Technology of China, 42(1), 1-9.
Shaw, P.T., Chao, S. Y. (1994). Surface circulation in the South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 41(11–12), 1663-1683. doi: 10.1016/0967-0637(94)90067-1
Suess, H. E. (1953). Natural radiocarbon and the rate of exchange of carbon dioxide between the atmosphere and the sea. Proceedings of the Conference on Nuclear Processes in Geologic Settings, 52-56.
Suess, H. E. (1955). Radiocarbon concentration in modern wood. Science, 122(3166), 415-417.
Suess, H. E. (1965). Secular variations of the cosmic-ray-produced carbon-14 in the atmosphere and their interpretations. J. geophys. Res. 70, 5937-5932.
Stenström, K. E., Skog, G., Georgiadou, E., Genberg, J., Johansson, A. (2011). A guide to radiocarbon units and calculations.
Smith, S. V., Buddemeire, R. W., Redalje, R. C., Houck, J. E. (1979). Strontium-Calcium Thermometry in Coral Skeletons. Science, 204(4391), 404-407. doi: 10.1126/science.204.4391.404
Takesue, R. K., van Geen, A. (2004). Mg/Ca, Sr/Ca, and stable isotopes in modern and Holocene Protothaca staminea shells from a northern California coastal upwelling region. Geochimica et Cosmochimica Acta, 68(19), 3845-3861. doi:10.1016/j.gca.2004.03.021
Toggweiler, J. R., Dixon, K., Bryan, K. (1989). Simulations of radiocarbon in a coarse-resolution world ocean model: 2. Distributions of bomb-produced carbon 14. Journal of Geophysical Research, 94(C6). doi:10.1029/JC094iC06p08243
Trenberth, K. E., Hurrell, J. W. (1994). Decadal atmosphere-ocean variations in the Pacific. Climate Dynamics, 303-319.
Tripati, A. K., Eagle, R. A., Thiagarajan, N., Gagnon, A. C., Bauch, H., Halloran, P. R., Eiler, J. M. (2010). 13C–18O isotope signatures and ‘clumped isotope’ thermometry in foraminifera and coccoliths. Geochimica et Cosmochimica Acta, 74(20), 5697-5717. doi:10.1016/j.gca.2010.07.006
Villiers, S., Nelson, B. K., Chivas A. R. (1995). Biological Controls on Coral Sr/Ca and δ18O Reconstructions of Sea Surface Temperatures. Science, 269(5228), 1247-1249. doi:10.1126/science.269.5228.1247
Warter, V., Müller, W. (2017). Daily growth and tidal rhythms in Miocene and modern giant clams revealed via ultra-high resolution LA-ICPMS analysis — A novel methodological approach towards improved sclerochemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 465, 362-375. doi:10.1016/j.palaeo.2016.03.019
Watanabe, T., Oba, T. (1999). Daily reconstruction of water temperature from oxygen isotopic ratios of a modernTridacnashell using a freezing microtome sampling technique. Journal of Geophysical Research: Oceans, 104(C9), 20667-20674. doi:10.1029/1999jc900097
Watanabe, T., Suzuki, A., Kawahata, H., Kan, H., Ogawa, S. (2004). A 60-year isotopic record from a mid-Holocene fossil giant clam (Tridacna gigas) in the Ryukyu Islands: physiological and paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 212(3-4), 343-354. doi:10.1016/s0031-0182(04)00358-x
Weber, J. N., (1973). Incorporation of strontium into reef coral skeletal carbonate. Geochimica et Cosmochimica Acta, 37(9), 2173-2190. doi:10.1016/0016-7037(73)90015-X
Wei, J., Li, M. T., Malanotte-Rizzoli, P., Gordon, A. L., Wang, D. X. (2016). Opposite Variability of Indonesian Throughflow and South China Sea Throughflow in the Sulawesi Sea. Journal of Physical Oceanography, 46(10), 3165-3180. doi: 10.1175/JPO-D-16-0132.1
Welsh, K., Elliot, M., Tudhope A., Ayling B., Chappell, J. (2011). Giant bivalves (Tridacna gigas) as recorders of ENSO variability. Earth and Planetary Science Letters, 307(3-4), 266-270. doi:10.1016/j.epsl.2011.05.032
Wu, Y., Fallon, S. J. (2020). Prebomb to Postbomb 14C History From the West Side of Palawan Island: Insights Into Oceanographic Changes in the South China Sea. Journal of Geophysical Research: Oceans, 125(6). doi:10.1029/2019jc015979
Xie, P., Boyer, T., Bayler E., Xue, Y., Byrne, D., Reagan, J., Locarnini, R., Sun, F., Joyce, R., Kumar. A. (2009). An in situ‐satellite blended analysis of global sea surface salinity. JGR Oceans, 199(9), 6140-6160. doi:10.1002/2014JC010046
Xie, S., P., Xie, Q., Wang D., Liu, W., T. (2003). Summer upwelling in the South China Sea and its role in regional climate variations. Journal of geophysical research Oceans, 108(C8), 3261. doi:10.1029/2003JC001867
Yan, H., Liu, C., An, Z., Yang, W., Yang, Y., Huang, P., Zhou, W. (2020). Extreme weather events recorded by daily to hourly resolution biogeochemical proxies of marine giant clam shells. Proc Natl Acad Sci U S A, 117(13), 7038-7043. doi:10.1073/pnas.1916784117
Yan, H., Shao, D., Wang, Y., Sun, L. (2013). Sr/Ca profile of long-lived Tridacna gigas bivalves from South China Sea: A new high-resolution SST proxy. Geochimica et Cosmochimica Acta, 112, 52-65. doi:10.1016/j.gca.2013.03.007
Yan, H., Wang, Y., Sun, L. (2014). High resolution oxygen isotope and grayscale records of a medieval fossil giant clam (Tridacna gigas) in the South China Sea: physiological and paleoclimatic implications. Acta Oceanologica Sinica, 33(8), 18-25. doi:10.1007/s13131-014-0399-4
Yokoyama, Y., Suzuki, A., Siringan, F., Maeda, Y., Abe-Ouchi, A., Ohgaito, R., Matsuzaki, H. (2011). Mid-Holocene palaeoceanography of the northern South China Sea using coupled fossil-modern coral and atmosphere-ocean GCM model. Geophysical Research Letters, 38(8), n/a-n/a. doi:10.1029/2010gl044231
Yu, Y., Xing, X., Liu, H., Yuan, Y., Wang, Y., Chai, F. (2009). The variability of chlorophyll-a and its relationship with dynamic factors in the basin of the South China Sea. Journal of Marine Systems, 200(103230), 1-12. doi:10.1016/j.jmarsys.2019.103230
Yu, K., F., Hua, Q., Zhao, J., X., Hodge, E., Fink, D., Barbetti, M. (2010) Holocene marine 14C reservoir age variability : Evidence from 230Th-dated corals in the South China Sea. Paleoceanography, 25(3), 3025. doi: 10.1029/2009PA001831
Yuan, D. L., Han, W. Q., Hu, D. X. (2006). Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data. Journal of Geophysical Research, 111, C11007. doi:10.1029/2005jc003412
Yuan, Y. C., Liao, G. H., Yang, C. H., Liu, Z. H., Chen, H., Wang, Z. G. (2014). Summer Kuroshio Intrusion through the Luzon Strait confirmed from observations and a diagnostic model in summer 2009. Progress in Oceanography, 121, 44–59. doi:10.1016/j.pocean.2013.10.003
Zhang, S., Harrison, M. J., Wittenberg, A. T., Rosati, A., Anderson, J. L., Balaji, V. (2005). Initialization of an ENSO Forecast System Using a Parallelized Ensemble Filter. Monthly Weather Review, 133(11), 3176-3201. doi: 10.1175/MWR3024.1
Zhao, Y., Yu, Z., Chen, F., Li, J. (2008). Holocene vegetation and climate change from a lake sediment record in the Tengger Sandy Desert, northwest China. Journal of Arid Environments, 72(11), 2054-2064. doi:10.1016/j.jaridenv.2008.06.016
Zhou, W., Chan, J. C. L. (2007). ENSO and the South China Sea summer monsoon onset. International Journal of Climatology, 27(2), 157-167. doi:10.1002/joc.1380
Zhoun, L., T., Tam, C., Y., Zhou W., Chan, J., C., L. (2010). Influence of South China Sea SST and the ENSO on winter rainfall over South China. Advances in Atmospheric Sciences, 27(4), 832–844. doi: doi: 10.1007/s00376–009-9102-7
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21732-
dc.description.abstract本研究對來自南中國海西南部靠近菲律賓海域採集得的硨磲貝(Tridacna gigas)樣本進行14C定年和地球化學研究,旨在構建幾十年來的海洋核爆碳曲線以及海溫變化趨勢。所使用的硨磲貝殼體長約72 cm、高約37 cm、厚約12 cm。殼體可明顯區分為透光的珍珠層(內層)與不透光的棱柱層(外層),內層經XRD分析結果顯示皆為霰石組成。沿著內層紋層生長方向共計99個的AMS 14C 定年結果顯示皆含核爆碳,現代碳比例介於109.11% 到115.74%之間,D14C範圍介於91.1‰ 到157.4‰之間,利用該樣本的核爆碳曲線對比南中國海珊瑚Δ14C數據可獲得硨磲生長年代大約從西元1970到1985年,這是首次利用14C核爆曲線估算硨磲生長年齡的研究。另外,該核爆碳曲線於反聖嬰年間(約1976年前後) D14C值呈現較低的結果,推測是因為在反聖嬰時期,由呂宋海峽進入南中國海表層的黑潮支流減少,當黑潮流帶來的暖水減少,會使得南海表層垂直溫差減小、南中國海逆時針環流減弱和上浮水動力減弱,使得南中國海西南部海域的湧升流增強,並帶來D14C值較低的深層海水。210Pb定年結果則顯示硨磲貝中的210Pb活度太低,無法用於定年。碳、氧同位素分析結果顯示其值分別介於1.10‰ 至 3.29‰ 與 -3.15‰ 至 -1.34‰ 之間,雖然相較於前人研究其季節性變化較弱,但氧同位素仍可顯示年際變化,從而更為精確的指示硨磲生長年代。δ18O值於1982-1983的強聖嬰年間呈現明顯偏負結果,推測為高水溫與強降雨所致。Sr/Ca比範圍則介於2.09 至 0.947mmol/mol間,無明顯季節性變化。綜合以上研究,可以為我們建立利用硨磲貝紀錄研究近現代和過去氣候變化及海水同位素組成改變的方法,未來或許可用於重建熱帶海洋中水團的運動和水氣交換作用。zh_TW
dc.description.abstractA Tridacna gigas shell collected from southwestern area of South China Sea (SCS) was used for studying “nuclear bomb 14C activity” in surface ocean water and geochemical proxies of paleoceanography. The shell is about 30 kg in weight with 72 cm in length, 37 cm in width and maximum thickness of 12 cm. Along a sampling track in the relatively transparent area (Inner layer), a total of 99 samples have been taken for AMS 14C dating. Up to date, all the AMS dates show that all samples contain nuclear bomb signal (percentage of modern carbon (pMC) ranging from 109.11% to 115.74%). The D14C range is between 91.1 ‰ and 157.4 ‰. Using the nuclear bomb carbon curve to compare with the Δ14C data of corals in the South China Sea, the growth period of the Tridacna gigas is ca. 1970-1985 C.E.. This is the first study of using 14C nuclear bomb curve to estimate the growth age of a giant clam. The nuclear bomb carbon curve showed a lower D14C value during the La Niña Year (1976 C.E.). It hypotheses that during La Niña period the surface water from NW equatorial Pacific entering South China Sea via Luzon Strait was reduced, so that upwelling in the SW area of SCS was increased which in term provided lower D14C water. The 210Pb dating on the shell shows very low 210Pb activity, so that no chronology information from the 210Pb dating. The carbon and oxygen isotope analytical results range from 1.104 ‰ to 3.292 ‰ and from -3.154 ‰ to -1.336 ‰, respectively. Although the seasonal variation of stable isotope result is weak, but the δ18O record can be identified by annual variation, which helps us in chronology improvement of the giant clam. The δ18O value showed more negatively during the strong El Niño year from 1982 to 1983. The Sr/Ca ratio of Tridacna gigas ranges from 2.09 to 0.947 mmol/mol, with no obvious seasonal changes. Based on the above research results, we can establish a method by using the giant clam record to study modern and past climate changes and the seawater isotopic composition, which can be used in the future to reconstruct the movement of water masses and the exchange of water and air in tropical oceansen
dc.description.provenanceMade available in DSpace on 2021-06-08T03:44:25Z (GMT). No. of bitstreams: 1
U0001-0601202121474000.pdf: 6498368 bytes, checksum: 95c0e6aa293d2e7a8ba9f6d908a42b4f (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
中文摘要 III
Abstract IV
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 核爆碳紀錄 4
2.1.1 陸地核爆碳紀錄 4
2.1.2 海洋核爆碳紀錄 6
2.1.3 海洋核爆碳紀錄與洋流、ENSO間關係 8
2.2 硨磲貝殼體碳氧同位素紀錄 9
2.3 硨磲貝殼體鍶鈣比紀錄 15
第三章 研究材料與區域 19
3.1 研究材料描述 19
3.2 研究區域 22
第四章 硨磲簡介 26
4.1 物種分類 26
4.2 生長環境 27
4.3 生長機制 28
4.4 殼體組成結構 30
第五章 研究方法及原理 33
5.1 研究流程 33
5.1.1 樣品處理 33
5.1.2 14C定年採樣及實驗流程 34
5.1.3 210Pb定年採樣及實驗流程 36
5.1.4 穩定同位素採樣及實驗流程 37
5.1.5 Sr/Ca採樣及分析流程 38
5.2 實驗原理 39
5.2.1 AMS 14C定年原理 39
5.2.2 核爆碳原理 41
5.2.3 碳氧同位素分析原理 44
5.2.4 Sr/Ca海洋溫度計原理 48
第六章 研究結果 51
6.1 XRD分析 51
6.2 紋層計算 52
6.3 14C定年結果 53
6.4 210Pb定年結果 54
6.5 碳氧同位素分析結果 55
6.6 Sr/Ca分析結果 57
第七章 討論 58
7.1 硨磲年代推論 58
7.1.1 核爆碳曲線 58
7.1.2 氧同位素記錄 61
7.1.3 生長層判識 64
7.2 硨磲生長環境探討 66
7.2.1 δ18O海溫轉換 67
7.2.2 對比前人硨磲δ18O紀錄 71
7.3 環境意義探討─核爆碳曲線 72
7.3.1南海洋流系統和ENSO機制 73
7.4 環境意義探討─氧同位素 79
7.4.1 反聖嬰年(1976年) 80
7.4.2 聖嬰年(1982、1983年) 80
7.5 環境意義探討─碳同位素 81
7.6 硨磲Sr/Ca SST探討 85
7.7 綜合討論 88
第八章 結論 92
參考文獻 93
附錄一 硨磲AMS 14C定年結果 106

dc.language.isozh-TW
dc.title南中國海現代硨磲貝14C定年及地球化學紀錄zh_TW
dc.title14C dating and geochemistry records of modern Tridacna gigas from South China Seaen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee米泓生(Horng-Sheng Mii),蕭仁傑(Jen-Chieh Shiao)
dc.subject.keyword硨磲,AMS14C,碳氧同位素,Sr/Ca,zh_TW
dc.subject.keywordTridacna (giant clam),AMS14C,δ18O,δ13C,Sr/Ca,en
dc.relation.page108
dc.identifier.doi10.6342/NTU202100025
dc.rights.note未授權
dc.date.accepted2021-01-07
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
U0001-0601202121474000.pdf
  未授權公開取用
6.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved