請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21654完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉雅瑄(Ya-Hsuan Liou) | |
| dc.contributor.author | Yu-Min Liao | en |
| dc.contributor.author | 廖昱閔 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:41:18Z | - |
| dc.date.copyright | 2021-01-20 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-01-18 | |
| dc.identifier.citation | AAisawa, S., Hirahara, H., Uchiyama, H., Takahashi, S., Narita, E. (2002). Synthesis and thermal decomposition of Mn–Al layered double hydroxides. Journal of Solid State Chemistry, 167(1), 152-159. Aramendía, M. A., Avilés, Y., Borau, V., Luque, J. M., Marinas, J. M., Ruiz, J. R., Urbano, F. J. (1999). Thermal decomposition of Mg/Al and Mg/Ga layered-double hydroxides: a spectroscopic study. Journal of Materials Chemistry, 9(7), 1603-1607. Anke, S., Bendt, G., Sinev, I., Hajiyani, H., Antoni, H., Zegkinoglou, I., . . . Muhler, M. (2019). Selective 2-Propanol Oxidation over Unsupported Co3O4 Spinel Nanoparticles: Mechanistic Insights into Aerobic Oxidation of Alcohols. ACS Catalysis, 9(7), 5974-5985. Benício, L. P. F., Silva, R. A., Lopes, J. A., Eulálio, D., Santos, R. M. M. D., Aquino, L. A. D., ... Tronto, J. (2015). Layered double hydroxides: nanomaterials for applications in agriculture. Revista Brasileira de Ciência do Solo, 39(1), 1-13. Biernacki, L., Pokrzywnicki, S. (1999). The thermal decomposition of manganese carbonate thermogravimetry and exoemission of electrons. Journal of thermal analysis and calorimetry, 55(1), 227-232. Biesinger, M. C., Payne, B. P., Grosvenor, A. P., Lau, L. W. M., Gerson, A. R., Smart, R. S. C. (2011). Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 257(7), 2717-2730. Busca, G., Daturi, M., Finocchio, E., Lorenzelli, V., Ramis, G., Willey, R. J. (1997). Transition metal mixed oxides as combustion catalysts: preparation, characterization and activity mechanisms. Catalysis today, 33(1-3), 239-249. Cavani, F., Trifiro, F., Vaccari, A. (1991). Hydrotalcite-type anionic clays: Preparation, properties and applications. Catalysis today, 11(2), 173-301. Constantino, V. R., Pinnavaia, T. J. (1995). Basic properties of Mg2+1-xAl3+x layered double hydroxides intercalated by carbonate, hydroxide, chloride, and sulfate anions. Inorganic Chemistry, 34(4), 883-892. Di Cosimo, J. I., Dıez, V. K., Xu, M., Iglesia, E., Apesteguıa, C. R. (1998). Structure and surface and catalytic properties of Mg-Al basic oxides. Journal of Catalysis, 178(2), 499-510. Dıez, V. K., Apesteguıa, C. R., Di Cosimo, J. I. (2003). Effect of the chemical composition on the catalytic performance of MgyAlOx catalysts for alcohol elimination reactions. Journal of Catalysis, 215(2), 220-233. Debecker, D. P., Gaigneaux, E. M., Busca, G. (2009). Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis. Chemistry, 15(16), 3920-3935. Dula, R., Janik, R., Machej, T., Stoch, J., Grabowski, R., Serwicka, E. M. (2007). Mn-containing catalytic materials for the total combustion of toluene: The role of Mn localisation in the structure of LDH precursor. Catalysis Today, 119(1-4), 327-331. Dwivedi, G. D., Joshi, A. G., Kumar, S., Chou, H., Yang, K. S., Jhong, D. J., . . . Chatterjee, S. (2016). Electronic structure study of wide band gap magnetic semiconductor (La0.6Pr0.4)0.65Ca0.35MnO3 nanocrystals in paramagnetic and ferromagnetic phases. Applied Physics Letters, 108(17), 172402. Fan, G., Li, F., Evans, D. G., Duan, X. (2014). Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem Soc Rev, 43(20), 7040-7066. Farquhar, M. L., Charnock, J. M., England, K. E., Vaughan, D. J. (1996). Adsorption of Cu(II) on the (0001) plane of mica: A REFLEXAFS and XPS study. Journal of Colloid and Interface Science, 177(2), 561-567. Foo, G. S., Polo-Garzon, F., Fung, V., Jiang, D.-e., Overbury, S. H., Wu, Z. (2017). Acid–Base Reactivity of Perovskite Catalysts Probed via Conversion of 2-Propanol over Titanates and Zirconates. ACS Catalysis, 7(7), 4423-4434. Freireich, A. W., Cinque, T. J., Xanthaky, G., Landau, D. (1967). Hemodialysis for isopropanol poisoning. New England Journal of Medicine, 277(13), 699-700. Fuhrer, J. (2009). Ozone risk for crops and pastures in present and future climates. Naturwissenschaften, 96(2), 173-194. Genty, E., Cousin, R., Capelle, S., Gennequin, C., Siffert, S. (2012). Catalytic Oxidation of Toluene and CO over Nanocatalysts Derived from Hydrotalcite-Like Compounds (X62+Al23+): Effect of the Bivalent Cation. European Journal of Inorganic Chemistry, 2012(16), 2802-2811. Hattori, H., Ono, Y. (2018). Catalysts and catalysis for acid–base reactions. In Metal Oxides in Heterogeneous Catalysis (pp. 133-209). Elsevier. He, C., Cheng, J., Zhang, X., Douthwaite, M., Pattisson, S., Hao, Z. (2019). Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. Chemical Reviews, 119(7), 4471-4568. He, J., Wei, M., Li, B., Kang, Y., Evans, D. G., Duan, X. (2006). Preparation of Layered Double Hydroxides. 119, 89-119. Hu, P., Amghouz, Z., Huang, Z., Xu, F., Chen, Y., Tang, X. (2015). Surface-confined atomic silver centers catalyzing formaldehyde oxidation. Environ Sci Technol, 49(4), 2384-2390. Jabłońska, M., Chmielarz, L., Węgrzyn, A., Góra-Marek, K., Piwowarska, Z., Witkowski, S., . . . Majda, D. (2015). Hydrotalcite derived (Cu, Mn)–Mg–Al metal oxide systems doped with palladium as catalysts for low-temperature methanol incineration. Applied Clay Science, 114, 273-282. Jenkin, M. E., Derwent, R. G., Wallington, T. J. (2017). Photochemical ozone creation potentials for volatile organic compounds: Rationalization and estimation. Atmospheric Environment, 163, 128-137. Jiang, Z., Kong, L., Chu, Z., France, L. J., Xiao, T., Edwards, P. P. (2012). Catalytic combustion of propane over mixed oxides derived from CuxMg3−xAl hydrotalcites. Fuel, 96, 257-263. Kissinger, H. E., McMurdie, H. F., Simpson, B. S. (1956). Thermal decomposition of manganous and ferrous carbonates. Journal of the American Ceramic Society, 39(5), 168-172. Lamaita, L., Peluso, M. A., Sambeth, J. E., Thomas, H., Mineli, G., Porta, P. (2005). A theoretical and experimental study of manganese oxides used as catalysts for VOCs emission reduction. Catalysis Today, 107-108, 133-138. Lee, S. H., Kwon, Y., Park, S., Cho, M., Lee, Y. (2015). Facile synthesis of MnCO3 nanoparticles by supercritical CO2 and their conversion to manganese oxide for supercapacitor electrode materials. Journal of Materials Science, 50(18), 5952-5959. Li, H., Zhang, X., Ding, R., Qi, L., Wang, H. (2013). Facile synthesis of mesoporous MnO2 microspheres for high performance AC//MnO2 aqueous hybrid supercapacitors. Electrochimica Acta, 108, 497-505. Li, P., He, C., Cheng, J., Ma, C. Y., Dou, B. J., Hao, Z. P. (2011). Catalytic oxidation of toluene over Pd/Co3AlO catalysts derived from hydrotalcite-like compounds: Effects of preparation methods. Applied Catalysis B: Environmental, 101(3-4), 570-579. Liu, S. Y., Yang, S. M. (2008). Complete oxidation of 2-propanol over gold-based catalysts supported on metal oxides. Applied Catalysis A: General, 334(1-2), 92-99. Liu, Y., Jia, L., Lin, Y., Zhao, Y., Sun, L., Ma, H., . . . Guo, Y. (2018). Catalytic Combustion of Toluene over Cu–Mn Mixed Oxide Catalyst. Journal of Chemical Engineering of Japan, 51(9), 769-777. Liu, Y., Zhang, P., Zhan, J., Liu, L. (2019). Heat treatment of MnCO3: An easy way to obtain efficient and stable MnO2 for humid O3 decomposition. Applied Surface Science, 463, 374-385. Machej, T., Serwicka, E. M., Zimowska, M., Dula, R., Michalik-Zym, A., Napruszewska, B., . . . Socha, R. (2014). Cu/Mn-based mixed oxides derived from hydrotalcite-like precursors as catalysts for methane combustion. Applied Catalysis A: General, 474, 87-94. Marco, L. A. S. Isopropyl alcohol poisoning. ln: UpToDate, Post TW (Ed), UpToDate, Waltham, MA (Assessed on July 28, 2020.) Miao, L., Wang, J., Zhang, P. (2019). Review on manganese dioxide for catalytic oxidation of airborne formaldehyde. Applied Surface Science, 466, 441-453. Mo, S., Li, S., Li, W., Li, J., Chen, J., Chen, Y. (2016). Excellent low temperature performance for total benzene oxidation over mesoporous CoMnAl composited oxides from hydrotalcites. Journal of Materials Chemistry A, 4(21), 8113-8122. Morales, M. R., Yeste, M. P., Vidal, H., Gatica, J. M., Cadus, L. E. (2017). Insights on the combustion mechanism of ethanol and n-hexane in honeycomb monolithic type catalysts: Influence of the amount and nature of Mn-Cu mixed oxide. Fuel, 208, 637-646. National Research Council (U. (1984). Emergency And Continuous Exposure Limits For Selected Airborne Contaminants Volume 2 (Vol. 1). National Academies Press. Paredis, K., Ono, L. K., Mostafa, S., Li, L., Zhang, Z., Yang, J. C., . . . Cuenya, B. R. (2011). Structure, chemical composition, and reactivity correlations during the in situ oxidation of 2-propanol. J Am Chem Soc, 133(17), 6728-6735. Qian, K., Qian, Z., Hua, Q., Jiang, Z., Huang, W. (2013). Structure–activity relationship of CuO/MnO2 catalysts in CO oxidation. Applied Surface Science, 273, 357-363. Sharma, S. K., Parikh, P. A., Jasra, R. V. (2007). Solvent free aldol condensation of propanal to 2-methylpentenal using solid base catalysts. Journal of Molecular Catalysis A: Chemical, 278(1-2), 135-144. Slaughter, R. J., Mason, R. W., Beasley, D. M., Vale, J. A., Schep, L. J. (2014). Isopropanol poisoning. Clin Toxicol (Phila), 52(5), 470-478. Tanasoi, S., Mitran, G., Tanchoux, N., Cacciaguerra, T., Fajula, F., Săndulescu, I., . . . Marcu, I.-C. (2011). Transition metal-containing mixed oxides catalysts derived from LDH precursors for short-chain hydrocarbons oxidation. Applied Catalysis A: General, 395(1-2), 78-86. Tanasoi, S., Tanchoux, N., Urdă, A., Tichit, D., Săndulescu, I., Fajula, F., Marcu, I.-C. (2009). New Cu-based mixed oxides obtained from LDH precursors, catalysts for methane total oxidation. Applied Catalysis A: General, 363(1-2), 135-142. Tichit, D., Lhouty, M. H., Guida, A., Chiche, B. H., Figueras, F., Auroux, A., ... Garrone, E. (1995). Textural properties and catalytic activity of hydrotalcites. Journal of catalysis, 151(1), 50-59. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. Vaccari, A. (1998). Preparation and catalytic properties of cationic and anionic clays. Catalysis Today, 41(1-3), 53-71. Velu, S., Shah, N., Jyothi, T. M., Sivasanker, S. (1999). Effect of manganese substitution on the physicochemical properties and catalytic toluene oxidation activities of Mg–Al layered double hydroxides. Microporous and Mesoporous Materials, 33(1-3), 61-75. Wang, J., Zhao, H., Song, J., Zhu, T., Xu, W. (2019). Structure-Activity Relationship of Manganese Oxide Catalysts for the Catalytic Oxidation of (chloro)-VOCs. Catalysts, 9(9), 726. Wang, Q., Gao, Y., Luo, J., Zhong, Z., Borgna, A., Guo, Z., O'Hare, D. (2013). Synthesis of nano-sized spherical Mg3Al–CO3 layered double hydroxide as a high-temperature CO2 adsorbent. RSC Advances, 3(10), 3414. Wang, Y.-T., Lu, A.-H., Zhang, H.-L., Li, W.-C. (2011). Synthesis of Nanostructured Mesoporous Manganese Oxides with Three-Dimensional Frameworks and Their Application in Supercapacitors. The Journal of Physical Chemistry C, 115(13), 5413-5421. Xing, X., Li, N., Cheng, J., Sun, Y., Wang, G., Zhang, Z., . . . Hao, Z. (2019). Hydrotalcite-Derived CuxMg3–xAlO Oxides for Catalytic Degradation of n-Butylamine with Low Concentration NO and Pollutant-Destruction Mechanism. Industrial Engineering Chemistry Research, 58(22), 9362-9371. Yang, C., Miao, G., Pi, Y., Xia, Q., Wu, J., Li, Z., Xiao, J. (2019). Abatement of various types of VOCs by adsorption/catalytic oxidation: A review. Chemical Engineering Journal, 370, 1128-1153. Zabetakis, M. G. (1965). Flammability characteristics of combustible gases and vapors (No. BULL-627). Bureau of Mines Washington DC. Zhang, S., Wang, H., Si, H., Jia, X., Wang, Z., Li, Q., . . . Zhang, J. (2020). Novel Core-Shell (epsilon-MnO2/CeO2)@CeO2 Composite Catalyst with a Synergistic Effect for Efficient Formaldehyde Oxidation. ACS Appl Mater Interfaces, 12(36), 40285-40295. Zhu, C., Osherov, A., Panzer, M. J. (2013). Surface chemistry of electrodeposited Cu2O films studied by XPS. Electrochimica Acta, 111, 771-778. 林文川(2009),製程VOCs廢氣之收集與處理,工業污染防治,第110期。 勞動部職業安全衛生署(2020),職業暴露甲醇、丁醇、異丙醇、環己醇、甲基環己醇引起之中毒認定參考指引。 經濟部工業局(2007),揮發性有機物廢氣減量及處理手冊。 經濟部工業局(2009),半導體業資源化應用技術手冊。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21654 | - |
| dc.description.abstract | 異丙醇在半導體產業常作為晶圓的清洗溶劑,然而其屬於一種揮發性有機物,經由製程所排放的廢氣將造成人體健康受損和環境污染。觸媒氧化法為最廣泛使用的揮發性有機物控制技術之一,本研究以共沉澱法製備類水滑石作為觸媒,合成鎂鋁、銅鎂鋁與錳鎂鋁三種類型的材料,並同時調控金屬含量與鍛燒溫度形成金屬氧化物,以T95 (95%異丙醇轉換的溫度) 與二氧化碳的產率評估材料與異丙醇之反應性,以及探討可能的反應機制。 X射線繞射光譜結果顯示,銅鎂鋁材料的銅能替換鎂形成含銅的類水滑石,並在鍛燒後形成CuO且晶相強度隨鍛燒溫度上升而增加。錳鎂鋁材料則出現MnCO3晶型,其晶相強度隨錳含量增加而變強,MnCO3經過400°C鍛燒形成低結晶性之ε-MnO2,在更高鍛燒溫度下轉變成Mn2O3。藉由X射線光電子能譜分析儀得知材料過渡金屬與表面氧的型態,銅鎂鋁中CuO/Cu(OH)2與錳鎂鋁材料中Mn+3/Mn+4的比例皆隨鍛燒溫度增加而上升;兩者表面吸附態氧與表面晶格氧的比例皆隨材料的鍛燒溫度升高而降低,與X射線繞射光譜的結果一致。 觸媒與異丙醇反應的結果顯示,銅含量越高,降低鍛燒溫度能增加反應效率,以銅含量40 at.%經過500°C鍛燒的材料的T95最低為290°C。錳鎂鋁材料經過400°C鍛燒後,異丙醇之T95隨錳含量增加而降低,以50 at.%錳含量的反應效果最佳,T95為265°C。銅鎂鋁和錳鎂鋁材料在含碳的產物僅有偵測到丙酮與二氧化碳,值得注意的是錳含量為50 at.%的材料經過400、500與600°C鍛燒後,在T95溫度並沒有明顯差距,然而二氧化碳的產率卻從59快速下降至36與25%。造成此一現象的原因與表面吸附態氧與表面晶格氧的比例相關。 觸媒與異丙醇在無氧環境下進行反應,都能產生一部分的二氧化碳,且在反應後,材料的晶型由CuO還原為零價金屬Cu;ε-MnO2還原為MnO,顯示表面晶格氧參與異丙醇的完全氧化反應,在反應機制上屬於Mars-van Krevelen。 | zh_TW |
| dc.description.abstract | Isopropanol (IPA) is widely used as a washing agent in semiconductor industries. However, IPA emissions pose growing threat to human health and environment. Catalytic oxidation is one of the most promising technologies for volatile organic compounds (VOCs) abatement. In this study, metal oxide catalysts obtained from hydrotalcite-like compounds using Mg-Al (MA), Cu-Mg-Al (CMA) and Mn-Mg-Al (MMA), metal content and calcination temperature as variables. The aim of this study was investigated the catalytic performances based on T95 (temperature corresponding to 95% conversion) and CO2 yield (%). Another goal was the recognition of the reaction pathways. X-ray powder diffraction showed Mg replaced by Cu in the structure of CMA. After calcination, phases of hydrotalcite-like compounds transformed to CuO phases. While MnCO3 phases formed in MMA and became ε-MnO2 after thermal treatment at 400°C, transformed to Mn2O3 after calcined above 500°C. X-ray photoelectron spectroscopy (XPS) suggested CuO/Cu(OH)2 in the CMA as well as Mn+3/Mn+4 in the MMA increased with higher thermal treatment. Moreover, the ratio of adsorbed oxygen to lattice oxygen decreased dramatically with increasing calcination temperature. From the point of IPA oxidation, higher content of Cu or Mn with lower calcination temperature of the catalysts exhibited better performance. T95 in the lowest temperature of CMA and MMA were 290 and 265°C, respectively. Acetone and CO2 were the only carbon-containing products detected. CO2 production was observed in IPA decomposition. After the experiment, CuO in the CMA transformed to Cu and ε-MnO2 in the MMA became MnO, which implied the mechanism of IPA oxidation possibly underwent through Mars-van Krevelen (MVK). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:41:18Z (GMT). No. of bitstreams: 1 U0001-1401202120173400.pdf: 7554682 bytes, checksum: 339e35caec6adb5f0d8cae4243954814 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 IX 第一章 緒論 1 1-1 研究緣起 1 1-2 研究目的 2 第二章 文獻回顧 3 2-1 異丙醇之簡介 3 2-1-1 異丙醇之基本特性 3 2-1-2 異丙醇的應用 4 2-1-3 異丙醇的危害 5 2-2 揮發性有機物之處理技術 7 2-2-1 吸附法 8 2-2-2 吸收法 8 2-2-3 冷凝法 9 2-2-4 生物處理法 9 2-2-5 氧化法 11 2-3 觸媒氧化法 12 2-3-1 觸媒氧化反應之操作變因 12 2-3-2 觸媒之種類 13 2-4 類水滑石之簡介 14 2-4-1 基本特性 14 2-4-2 合成方法 15 2-4-3 類水滑石的改質及其相關應用 16 2-4-4 改質類水滑石之變因 18 2-5 改質類水滑石表面金屬氧化物之特性 21 2-5-1 鹼性點 21 2-5-2 活性位置 22 第三章 實驗與方法 23 3-1 研究架構與內容 23 3-2 類水滑石之製備 24 3-3 材料物化特性分析 26 3-3-1 X射線繞射光譜儀 26 3-3-2 熱重分析儀 26 3-3-3 場發射掃描式電子顯微鏡/能量分散譜儀 27 3-3-4 比表面積分析儀 27 3-3-5 鹼性點 31 3-3-6 X射線光電子能譜儀 31 3-4 異丙醇觸媒氧化反應設置 32 3-4-1 異丙醇生成裝置 32 3-4-2 異丙醇觸媒氧化反應槽 32 3-4-3 異丙醇定量及產物分析 33 第四章 結果與討論 36 4-1 材料之物化特性 36 4-1-1 晶相分析 36 4-1-2 熱穩定分析 40 4-1-3 表面形貌與元素分析 45 4-1-4 比表面積分析 50 4-1-5 鹼性點分析 55 4-1-6 X射線光電子能譜分析 56 4-2 異丙醇之觸媒氧化反應 60 4-2-1 銅鎂鋁類水滑石 60 4-2-2 異丙醇觸媒氧化之反應物與產物分析 63 4-2-3 異丙醇與觸媒在無氧環境之反應 66 4-3 反應機制探討 70 4-3-1 銅鎂鋁類水滑石 70 4-3-2 錳鎂鋁類水滑石 71 第五章 結論與建議 73 5-1 結論 73 5-2 建議 74 參考文獻 75 附錄 83 | |
| dc.language.iso | zh-TW | |
| dc.title | 探討銅錳改質類水滑石完全氧化氣態異丙醇之機制 | zh_TW |
| dc.title | Reaction Pathways of Isopropanol Total Oxidation over (Cu, Mn)-Hydrotalcite-like Compounds | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡景堯(Ching-Yao Hu),林進榮(Chin-Jung Lin),陳佳吟(Chia-Ying Chen) | |
| dc.subject.keyword | 揮發性有機物,觸媒氧化,類水滑石材料,金屬氧化物,Mars-van Krevelen, | zh_TW |
| dc.subject.keyword | volatile organic compounds,catalytic oxidation,hydrotalcite-like materials,metal oxides,Mars-van Krevelen, | en |
| dc.relation.page | 86 | |
| dc.identifier.doi | 10.6342/NTU202100062 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-01-19 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1401202120173400.pdf 未授權公開取用 | 7.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
