請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21647
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭佳瑋 | |
dc.contributor.author | Mei-Ming Lee | en |
dc.contributor.author | 李美明 | zh_TW |
dc.date.accessioned | 2021-06-08T03:41:01Z | - |
dc.date.copyright | 2019-07-15 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-06-28 | |
dc.identifier.citation | [1] 古婉榛,《消費者交易型態與人格特質分析—以信用卡資料庫例》,(臺北:臺灣大學國際企業學研究所學位論文,2015)
[2] 林曉芳,《多變量分析在社會科學領域之應用-SPSS 操作與資料分析》,(臺北市:鼎茂,2014) [3] 范德鑫,〈共變數分析功能, 假設及使用之限制〉,《師大學報》,(1992) [4] 張志熙,《羅吉斯回歸於生物相似性藥品對等性評估之應用》,(臺北:臺灣大學農藝學研究所學位論文,2011) [5] 郭佳瑋、鄭安淇,〈以收益管理打造競爭優勢〉,《哈佛商業評論》,(2019 年6月) [6] 蔡曜亘,《零售電商之消費者回購預測:機械學習應用之實證究》,(臺北:臺灣大學商學研究所學位論文,2017) [7] Belin, T. R., & Normand, S. L. T.(2009). The role of ANCOVA in analyzing experimental data. Psychiatric Annals, 39(7), 753-760. [8] Bitran, G., & Caldentey, R.(2003). An overview of pricing models for revenue management. Manufacturing & Service Operations Management, 5(3), 203-229. [9] Breiman, L.(2001). Random forests machine learning. 45: 5–32. View Article PubMed/NCBI Google Scholar. [10] Burez, J., & Van den Poel, D. (2009). Handling class imbalance in customer churn prediction. Expert Systems with Applications, 36(3), 4626-4636. [11] Chen, T., & Guestrin, C(. 2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794). ACM. [12] Chen, T., He, T., Benesty, M., Khotilovich, V., & Tang, Y. (2015). Xgboost: 68 extreme gradient boosting. R package version 0.4-2, 1-4. [13] Cutler, A., Cutler, D. R., & Stevens, J. R.(2012). Random forests. In Ensemble machine learning (pp.157 175).Springer, Boston, MA. [14] Elmaghraby, W., & Keskinocak, P. (2003). Dynamic pricing in the presence of inventory considerations: Research overview, current practices, and future directions. Management science, 49(10), 1287-1309. [15] Ferri, C., Hernández-Orallo, J., & Modroiu, R. (2009 ). An experimental comparison of performance measures for classification. Pattern Recognition Letters, 30(1), 27-38. [16] Friedman, J. H.(2002). Stochastic gradient boosting. Computational statistics & data analysis, 38(4), 367-378. [17] Gallego, G., & Van Ryzin, G.(1994). Optimal dynamic pricing of inventories with stochastic demand over finite horizons. Management science, 40(8), 999-1020. [18] Gallego, G., & Van Ryzin, G. (1997). A multiproduct dynamic pricing problem and its applications to network yield management. Operations research, 45(1), 24-41. [19] Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R.(2006). Random forests for land cover classification. Pattern Recognition Letters, 27(4), 294-300. [20] Ho, T. K., The random subspace method for constructing decision forests‖, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 20, No. 8, 1998, pp.832-844. [21] Huitema, B. E. (2005). Analysis of covariance. Encyclopedia of Statistics in Behavioral Science. [22] Jain, A. K.(2010). Data clustering: 50 years beyond K-means. Pattern recognition letters, 31(8), 651-666. [23] Jalkanen, A., & Mattila, U. (2000). Logistic regression models for wind and snow 69 damage in northern Finland based on the National Forest Inventory data. Forest Ecology and Management, 135(1-3), 315-330. [24] Johnson, S. C.(1967). Hierarchical clustering schemes. Psychometrika, 32(3),241-254. [25] Keselman, H. J., Huberty, C. J., Lix, L. M., Olejnik, S., Cribbie, R. A., Donahue, B., & Levin, J. R.(1998). Statistical practices of educational researchers:An analysis of their ANOVA, MANOVA, and ANCOVA analyses. Review of educational research, 68(3), 350-386. [26] Khoshgoftaar, T. M., Golawala, M., & Van Hulse, J.(2007, October). An empirical study of learning from imbalanced data using random forest. In 19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2007)(Vol.2, pp. 310-317). [27] Kleinbaum, D. G., Dietz, K., Gail, M., Klein, M., & Klein, M.(2002). Logistic regression. New York:Springer Verlag. [28] Kleinbaum, D. G., Kupper, L. L., & Chambless, L. E. (1982). Logistic regression analysis of epidemiologic data: theory and practice. Communications in Statistics- Theory and Methods, 11(5), 485-547. [29] Liaw, A., & Wiener, M.(2002). Classification and regression by randomForest. R news, 2(3), 18-22. [30] Li, H., Zhu, H., & Ma, D.(2017). Demographic information inference through meta-data analysis of Wi-Fi traffic. IEEE Transactions on Mobile Computing, 17(5), 1033-1047. [31] Lim, D. H., & Kim, H.(2003). Motivation and learner characteristics affecting online learning and learning application. Journal of Educational Technology Systems, 31(4), 423-439.70 [32] Mohammed EA, Naugler C., & Far BH(2015),《Emerging Business Intelligence Framework for a Clinical Laboratory Through Big Data Analytics》(pp.591-594) [33] Pal, M., & Mather, P. M.(2003). An assessment of the effectiveness of decision tree methods for land cover classification. Remote sensing of environment, 86(4), 554-565. [34] Powers, D. M.(2011). Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. [35] Sánchez-Crisostomo, J. P., Alejo, R., López-González, E., Valdovinos, R. M., & Pacheco-Sánchez, J. H (2014,October). Empirical analysis of assessments metrics for multi-class imbalance learning on the back-propagation context. In International Conference in Swarm Intelligence (pp. 17-23). Springer, Cham. [36] See, L. C., & Wu, T. Y.(2000). Graphical Illustration of Analysis of Covariance(ANCOVA). NURSING RESEARCH-TAIPEI-, 8(2),260-269. [37] Selvin, S.(1995). Practical biostatistical methods (pp.139-168). New York: Duxburry Press. [38] Sendecor, G. W., & Cochran, W., G.(1980).Statistical methods (7th ed., pp.365-392). Iowa:Iowa State University Press. [39] Singh, S., & Gupta, P.(2014). Comparative study ID3, cart and C4. 5 decision tree algorithm: a survey. International Journal of Advanced Information Science and Technology (IJAIST), 27(27), 97-103. [40] Smith, S. A., & Achabal, D. D. (1998). Clearance pricing and inventory policies for retail chains. Management Science, 44(3), 285-300. [41] Song, R., Chen, S., Deng, B., & Li, L.(2016, June). eXtreme gradient boosting for identifying individual users across different digital devices. In International Conference on Web-Age Information Management (pp. 43-54). Springer, Cham. 71 [42] Strobl, C., Boulesteix, A. L., Zeileis, A., & Hothorn, T.(2007). Bias in random forest variable importance measures:Illustrations, sources and a solution. BMC bioinformatics, 8(1), 25. [43] Tharwat, A.(2018). Classification assessment methods. Applied Computing and Informatics. [44] Van Asch, V.(2013). Macro-and micro-averaged evaluation measures [[basic draft]]. Belgium: CLiPS, 1-27. [45] Waheed, T., Bonnell, R. B., Prasher, S. O., & Paulet, E.(2006). Measuring performance in precision agriculture : CART—A decision tree approach. Agricultural water management, 84(1-2), 173-185. [46] Wang, G. M.,(1995)The Comparisons of Advantages and Disadvantages among Different Kinds of Analysis of Variance [47] Zhang, L., & Zhan, C.(2017, May). Machine learning in rock facies classification: an application of XGBoost. In International Geophysical Conference, Qingdao, China, 17-20 April 2017 (pp. 1371-1374). Society of Exploration Geophysicists and Chinese Petroleum Society. [48] Zhao, W., & Zheng, Y. S. (2000). Optimal dynamic pricing for perishable assets with nonhomogeneous demand. Management science, 46(3), 375-388. [49] Zhou, Z. H. (2012). Ensemble methods: foundations and algorithms. Chapman and Hall/CRC. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21647 | - |
dc.description.abstract | 價格是行銷領域中重要的一環,好的定價策略不但能達到市場區隔的目標,也能提高消費者願付價格,完善的收益管理制度更是企業獲利之關鍵。
越來越多企業試著透過動態定價來提高收益,然而,錯誤的定價策略不但未能達到目的,更可能造成市場供需不平衡,進而產生缺貨或存貨成本。本論文所研究的對象為跨國企業A 公司,其產品由公司總部統一定價,總部會根據銷售狀況進行動態定價,台灣分公司面臨的問題是,總部頻繁的調整價格使台灣市場出現供需不平衡的問題,導致部分商品必須降價求售。因此,本論文的目的是找出價格波動頻繁的商品,瞭解其價格走勢與特徵,爾後有類似特徵的新產品上市,便能協助管理者預測其價格未來走勢。 本研究以A 公司2014~2018 年的歷史資料作分析。研究中建構三個預測模型(預測前先將產品按歷史價格分為六類): 模型一:透過隨機森林、XGBoost 演算法預測產品類別,進而瞭解該產品未來價格走勢。 模型二:使用邏輯斯迴歸預測類別之機率,並找出類別間之差異。 模型三:給定類別下,進一步以共變數分析預測下期價格。 研究結果顯示,XGBoost 模型之預測力較隨機森林好。當產品特徵為(1)價格較低(2)熱銷顏色(3)產品款式是18~24 歲與35 歲以上消費者所偏好的款式(4)上市的月份是在四、五、八、十月,總部可能會頻繁地調價。在價格方面,本期價格與下期價格顯著正相關,且影響程度因改變價格次數多寡有所不同(有顯著交互作用)。 | zh_TW |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:41:01Z (GMT). No. of bitstreams: 1 ntu-108-R06741053-1.pdf: 3245028 bytes, checksum: 74384083ade55613e322ca7b73159ec6 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 致謝 I
中文摘要 II ABSTRACT III 圖目錄 VI 表目錄 VIII 第一章緒論 1 第一節 研究背景與動機 1 第二節 研究目的 2 第三節 研究流程與架構 2 第二章 文獻探討 4 第一節 定價理論 4 第二節 統計分析方法 6 共變數分析 6 邏輯斯迴歸 9 第三節 機器學習方法 10 隨機森林 10 極限梯度提升 13 Macro-average 14 第三章 資料說明與前處理 17 第一節 資料說明 17 產品資訊 17 門市資訊 18 交易時點資訊 18 消費者資訊 19 交易價量資訊 20 第二節 資料前處理 21 資料選取範圍 21 資料分群 22 第四章 資料分析與探討 41 第一節 敘述性統計 41 第二節 預測模型 48 模型一:預測Category 49 模型二:預測是否為Category 1 53 模型三:預測下期價格 57 第五章 結論與建議 63 參考文獻 67 | |
dc.language.iso | zh-TW | |
dc.title | 探討零售業之定價策略-以A公司為例 | zh_TW |
dc.title | Pricing strategy in retail industry | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 藍俊宏,黃奎隆 | |
dc.subject.keyword | 價格策略,隨機森林,XGBoost,邏輯斯迴歸,共變數分析, | zh_TW |
dc.subject.keyword | pricing strategy,Random Forest,XGBoost,logistic regression,ANCOVA, | en |
dc.relation.page | 71 | |
dc.identifier.doi | 10.6342/NTU201901094 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2019-07-01 | |
dc.contributor.author-college | 管理學院 | zh_TW |
dc.contributor.author-dept | 商學研究所 | zh_TW |
顯示於系所單位: | 商學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 3.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。