請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21639完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鐘嘉德(Char-Dir Chung) | |
| dc.contributor.author | Jia-Ling Jiang | en |
| dc.contributor.author | 江嘉玲 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:40:43Z | - |
| dc.date.copyright | 2019-07-15 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-02 | |
| dc.identifier.citation | [1] M.-H. Hsieh and C.-H. Wei„ “Channel estimation for OFDM systems based on combtype pilot arrangement in frequency selective fading channels,” IEEE Trans. Broadcast., vol. 44, no. 1, pp. 217-225, Feb. 1998.
[2] H. Ye, G. Y. Li and B. Juang, “Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems,” IEEE Trans Commun., vol. 7, no. 1, pp. 114-117, Feb. 2018. [3] T. Cui and C. Tellambura, “OFDM channel estimation and data detection with superimposed pilots,” Eur. Trans. Telecommun., vol. 22, no. 3, pp. 125–136, Apr. 2011. [4] M. Morelli and U. Mengali, “A comparison of pilot-aided channel estimation methods for OFDM systems,” IEEE Trans. Signal Processing, vol. 49, no. 12, pp. 3065-3073, Dec. 2001. [5] Shengli Zhou, B. Muquet and G. B. Giannakis, “Subspace-based (semi-) blind channel estimation for block precoded space-time OFDM,” IEEE Trans. Signal Process., vol. 50, no. 5, pp. 1215-1228, May 2002. [6] Y. Liu and S. Blostein, “Identification of frequency non-selective fading channels using detection feedback and adaptive linear prediction,” IEEE Trans. Commun., vol. 43, no. 2-4, pp. 1484-1492, Apr. 1995. [7] R. Negi and J. Cioffi, “Pilot tone selection for channel estimation in a mobile OFDM system,” IEEE Trans. Consum. Electron., vol. 44, no. 3, pp. 1122-1128, Aug. 1998. [8] Y. Chen and N. C. Beaulieu, “An approximate maximum likelihood estimator for SNR jointly using pilot and data symbols,” IEEE Commun. Lett.,vol. 9, no. 6, pp. 517-519, Jun. 2005. [9] B. Muquet, M. de courville, and P. Duhamel, “Subspace-based blind and semi-blind channel estimation for OFDM systems,” IEEE Trans. Signal Process., vol. 50, no. 7, pp. 1699-1712, Jul. 2002. [10] S. Zhou and G. B. Giannakis, “Finite-alphabet based channel estimation for OFDM and related multicarrier systems,” IEEE Trans Commun., vol. 49, no. 8, pp. 1402-1414, Aug. 2001. [11] L.Wei and C. Schlegel, “Synchronization requirement for multi-user OFDM on satellite mobile and two-path Rayleigh fading channels,” IEEE Trans. Commun., vol. 43, nos. 2-4, pp. 887-895, Feb. 1995. [12] S. Ohno and G. B. Giannakis, “Optimal training and redundant precoding for block transmissions with application to wireless OFDM,” IEEE Trans. Commun., vol. 50, no. 12, pp. 2113-2123, Dec. 2002. [13] 3GPP TS 36.211 V12.3., LTE; Evolved universal terrestrial radio access (E-UTRA): Physical channels and modulation, Oct. 2014. [14] IEEE Standard 802.22-2011, Part 22: Cognitive wireless RAN medium access control (MAC) and physical layer (PHY) specifications: Policies and procedures for operation in the TV bands, Jul. 2011. [15] 3GPP TS 38.211 V15.4., 5G NR: Physical channels and modulation, Dec. 2018. [16] J.-W. Choi and Y.-H. Lee, “Optimum pilot pattern for channel estimation in OFDM systems,” IEEE Trans. Wireless Commun., vol. 4, no. 5, pp. 2083-2088, Sep. 2005. [17] S. Tong, B. M. Sadler, and M. Dong, “Optimal training and redundant precoding for block transmissions with application to wireless OFDM,” IEEE Trans. Commun., vol. 50, no. 12, pp. 2113-2123, Dec. 2002. [18] M. Faulkner, “The effect of filtering on the performance of OFDM systems,” IEEE Trans. Veh. Technol., vol. 49, no. 5, pp. 1877-1884, Sep. 2000. [19] E. Güvenkaya, A. ¸ Sahin, E. Bala, R. Yang, and H. Arslan, “A windowing technique for optimal time-frequency concentration and ACI rejection in OFDM-based systems,”IEEE Trans Commun., vol. 63, no. 12, pp. 4977-4989, Dec. 2015. [20] A. Tom, A. ¸ Sahin, and H. Arslan, “Suppressing alignment: Joint PAPR and out-of-band power leakage reduction for OFDM-based systems,” IEEE Trans Commun., vol. 64, no. 3, pp. 1100-1109, Mar. 2016. [21] C.-D. Chung, “Spectral precoding for rectangularly pulsed OFDM,” IEEE Trans. Commun.,vol. 56, no. 9, pp. 1498-1510, Sep. 2008. [22] H.-M. Chen, W.-C. Chen, and C.-D. Chung, “Spectrally precoded OFDM and OFDMA with cyclic prefix and unconstrained guard ratios,” IEEE Trans. Wireless Commun., vol. 10, no. 5, pp. 1416-1427, May 2011. [23] A. Tom, A. ¸ Sahin, and H. Arslan, “Mask compliant precoder for OFDM spectrum shaping,” IEEE Commun. Lett., vol. 17, no. 3, pp. 447-450, Mar. 2013. [24] F. R. B. Lopes and J. S. G. Panaro, “OFDM sidelobe suppression combining active and null cancellation carriers in the guard bands,” in Proc. Int. Microwave & Optoelec. Conf., Rio de Janeiro, Aug. 2013, pp. 1-5. [25] J. van de Beek and F. Berggren, “Out-of-band power suppression in OFDM,” IEEE Commun. Lett., vol. 12, no. 9, pp. 609–611, Sep. 2008. [26] W.-C. Chen and C.-D. Chung, “Spectrally efficient OFDM pilot waveform for channel estimation,” IEEE Trans. Commun., vol. 65, no. 1, pp. 387-402, Jan. 2017. [27] C.-D. Chung andW.-C. Chen, “Preamble sequence design for spectral compactness and initial synchronization in OFDM,” IEEE Trans. Veh. Technol., vol. 67, no. 2, pp. 1428-1443, Feb. 2018. [28] C.-C. Lin, W.-C. Chen, and C.-D. Chung, “Near-CAZAC preamble sequence for initial synchronization in spectrally compact OFDM,” in Proc. IEEE Veh. Technol. Conf., Chicago, Aug. 2018, pp. 1-6. [29] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge Univ. Press, 2004. [30] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge Univ. Presss, 1985. [31] C.-D. Chung and K.-W. Chen, “Spectrally precoded OFDM without guard insertion,” IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 107–121, Jan. 2017. [32] W.-C. Chen, C.-K. Yang, P.-T. Chi, and C.-D. Chung, “Pilot Sequence Design for Spectral Compactness and Channel Estimation in OFDM, ”, submitted to IEEE Veh. Technol. Conf., Sep. 2019. [33] S. Brandes, I. Cosovic, and M. Schnell, “Reduction of out-of-band radiation in OFDM systems by insertion of cancellation carriers,” IEEE Commun. Lett., vol. 10, no. 6, pp. 420-422, Jun. 2006. [34] W. R. Bennett, Introduction to Signal Transmission. New York: McGraw Hill, 1970. [35] J. A. Zhang, X. Huang, A. Cantoni, and Y. J. Guo, “Sidelobe suppression with orthogonal projection for multicarrier systems,” IEEE Trans. Commun., vol. 60, no. 2, pp. 589–599, Feb. 2012. [36] I. Cosovic, S. Brandes and M. Schnell, “Subcarrier weighting: a method for sidelobe suppression in OFDM systems,” IEEE Trans. Commun., vol. 10, no. 6, pp. 444-446, Jun. 2006. [37] T.-W. Wu, W.-C. Chen, Y.-M. Huang,Y. Huang, C.-D. Chung and B. Jiao, “OFDM with Spectral Precoding and Specific-Band Power Minimization,” in Proc. IEEE Veh. Technol. Conf., Seoul, pp. 1-5, May 2014. [38] Y.-P. Lin, S.-M. Phoong and P. P. Valdyanathan, Filter Bank Transceivers for OFDM and DMT Systems. Cambridge, 2011. [39] L. Díez, J. A. Cortés, F. J. Cañete, E. Martos and S. Iranzo, “A Generalized Spectral Shaping Method for OFDM Signals, ” IEEE Trans. Commun., vol. 67, no. 5, pp. 3540-3551, May 2019. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21639 | - |
| dc.description.abstract | 在現行的正交分頻多工(OFDM)系統和標準,估測訊號多用來作為通道的估測。這些估測訊號波形都來自於設計良好的估測訊號序列如Zadoff-chu sequence,這些序列都具有是由相同振幅的元素所組成以確保估測最佳化,同時也能達到低峰均功率比(PAPR)。然而,這些波形具有較大的旁脈,對於鄰近的頻段產生干擾。本篇論文,利用設計消除符元(Cancellation symbols) 插入技術達到壓抑正交分頻多工領航訊號旁脈頻譜,同時在半平穩多重路徑(quasi-static multipath)通道下,估測訊號可達到最佳的通道估測。過去所提出的消除符元同時壓抑資料與估測訊號,接收端無法知道消除符號。此篇論文提出的消除符元僅和估測訊號相關,因此,接收端可利用放在保護頻帶上的已知消除符元協助通道估測抑或者將消除符元與資料符元使用同一載波傳送可進一步減少消除符元所需要的能量。
相較於直接使用改變估測訊號序列的方法僅能應用到特定長度的估測訊號,插入消除符元可以應用到任意的長度的估測訊號,同時,維持較低的低峰均功率比。 | zh_TW |
| dc.description.abstract | In this thesis, the cancellation symbol insertion (CSI) technique is adopted to suppress the sidelobe power of the OFDM pilot waveform while maintaining the channel estimation (CE) optimality on the quasi-static multipath channel. Different from the conventional CSI technique where the cancellation symbols (CSs) are designed to suppress the sidelobe power of composite OFDM waveforms conveying data and pilot symbols, the proposed CSs depend on pilot symbols only and can be known to the receiver. Hence, the CSs can be used to assist channel estimation when they are conveyed on guard subcarriers or reduce the cancellation symbol power without causing interference to data demodulation when they are superimposed on data subcarriers. The composite OFDM waveforms conveying spectrally precoded data symbols, optimum pilot symbols, and the proposed CSs are shown to exhibit highly compact spectrums, while providing enhanced CE and requiring reduced cancellation symbol power. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:40:43Z (GMT). No. of bitstreams: 1 ntu-108-R06942109-1.pdf: 4092491 bytes, checksum: ca837525d1ac2dda84bff7f1412424a8 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要iii Abstract iv Contents v List of Figures vii List of Tables xi 1 Introduction 1 1.1 Review of OFDM systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Review of channel estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Channel estimation with known symbols . . . . . . . . . . . . . . . 3 1.2.2 Channel estimation without known symbols . . . . . . . . . . . . . . 4 1.2.3 Channel estimation with known symbols and unknown symbols jointly 4 1.3 Review of sidelobe suppression . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Review of cancellation subcarriers insertion technique . . . . . . . . . . . . . 6 1.5 Review of spectrally efficient pilot (SEP) . . . . . . . . . . . . . . . . . . . 6 1.6 Thesis motivation, overview, and contributions . . . . . . . . . . . . . . . . . 7 2 OFDM System Model 10 3 Design of Cancellation Symbols for ASS 14 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Design procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Minimum cancellation power . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4 Comparison in SD orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.5 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.5.1 Power Spectral Compactness Characteristic . . . . . . . . . . . . . . 22 3.5.2 Peak-to-average power ratio performance . . . . . . . . . . . . . . . 30 4 Design of Cancellation Symbols for spectral nulling 33 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 Design procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3 Minimum cancellation power . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.4 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.4.1 Power Spectral Compactness Characteristic . . . . . . . . . . . . . . 38 5 Design of Cancellation Symbols for ASS and spectral nulling 45 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.2 Design procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.3 Minimum cancellation power . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.4 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.4.1 Power Spectral Compactness Characteristic . . . . . . . . . . . . . . 48 6 Pilot-aided channel estimation 51 6.1 Pilot in conjunction with CSs . . . . . . . . . . . . . . . . . . . . . . . . . . 51 7 Conclusion and future work 55 Bibliography 57 | |
| dc.language.iso | en | |
| dc.title | 可壓抑正交分頻多工領航訊號旁脈頻譜之消除符元設計 | zh_TW |
| dc.title | Cancellation Symbol Insertion Technique for Sidelobe Suppression in OFDM Pilot Waveform | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳維昌(Wei-Chang Chen) | |
| dc.contributor.oralexamcommittee | 王晉良(Chin-Liang Wang),林茂昭(Mao-Chao Lin),李穎(Ying Li) | |
| dc.subject.keyword | 正交分頻多工,消除符元,旁脈壓抑,估測符元,通道估測, | zh_TW |
| dc.subject.keyword | Orthogonal frequency division multiplexing,cancellation symbol,sidelobe suppression,pilot symbol,channel estimation, | en |
| dc.relation.page | 61 | |
| dc.identifier.doi | 10.6342/NTU201900967 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2019-07-02 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
