Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21592
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂育道(Yuh-Dauh Lyuu)
dc.contributor.authorYu-Ming Luen
dc.contributor.author盧與明zh_TW
dc.date.accessioned2021-06-08T03:39:02Z-
dc.date.copyright2019-07-25
dc.date.issued2019
dc.date.submitted2019-07-13
dc.identifier.citationAkerlof, G. A. (1970). The Market for “Lemons”: Quality Uncertainty and the Market Mechanism. Quarterly Journal of Economics, 84(3), 488-500.
Altman, E. I. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. Journal of Finance, 23(4), 589-609.
Beaver, W. H. (1966). Financial Ratios as Predictors of Failure. Journal of Accounting Research, 4, 71-111.
Black, F., & Cox, J. C. (1976). Valuing Corporate Securities: Some Effects of Bond Indenture Provisions. Journal of Finance, 31(2), 351-67.
Black, F., & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 81(3), 637-54.
Blankenburg, S., & Palma, J. G. (2009). Introduction: The Global Financial Crisis. Cambridge Journal of Economics, 33(4), 531-538.
Brockman, P., & Turtle, H. J. (2003). A Barrier Option Framework for Corporate Security Valuation. Journal of Financial Economics, 67(3), 511-529.
Buss, A., & Vilkov, G. (2012). Measuring Equity Risk with Option-Implied Correlations. Review of Financial Studies, 25(10), 3113-3140.
Chen, C.-Y., Chou, P.-J., Hsu, Y.-S., Liu, P.-H., Lyuu, Y.-D., & Wang, C.-J. (2010). A Closed-Form Formula for an Option with Discrete and Continuous Barriers. Communications in Statistics - Theory and Methods, 40(2), 345-357.
Cox, J. C., & Rubinstein, M. (1985). Options Markets. New Jersey: Prentice-Hall.
Crosbie, P., & Bohn, J. (2003). Modeling Default Risk (Moody’s KMV technical report).
Dai, T.-S.,&Lyuu, Y.-D. (2010). The Bino-Trinomial Tree: A Simple Model for Efficient and Accurate Option Pricing. Journal of Derivatives, 17(4), 7-24.
Derman, E., & Kani, I. (1994a). Riding on a Smile. Risk, 7, 32-39.
Derman, E., & Kani, I. (1994b). The Volatility Smile and Its Implied Tree (Quantitative Strategies Research Notes). New York: Goldman Sachs.
Duan, J.-C., Sun, J., & Wang, T. (2012). Multiperiod Corporate Default Prediction — A Forward Intensity Approach. Journal of Econometrics, 170(1), 191-209.
Duffie, D. (1996). Dynamic Asset Pricing Theory (2nd ed.). Princeton University Press.
Duffie, D., Saita, L., &Wang, K. (2007). Multi-period Corporate Default Prediction with Stochastic Covariates. Journal of Financial Economics, 83(3), 635-665.
Duffie, D., & Singleton, K. (1999). Modeling Term Structure of Defaultable Bonds. Review of Financial Studies, 12(4), 687-720.
Dumas, B., Fleming, J., & Whaley, R. (1998). Implied Volatility Functions: Empirical Tests. Journal of Finance, 53(6), 2059-2106.
Dupire, B. (1994). Pricing with a Smile. Risk, 7, 18-20.
Eom, Y. H., Helwege, J., & Huang, J.-Z. (2004). Structural Models of Corporate Bond Pricing: An Empirical Analysis. Review of Financial Studies, 17(2), 499-544.
Financial Stability Board and International Monetary Fund. (2015). The Financial Crisis and Information Gaps (Sixth Progress Report on the Implementation of the G-20 Data Gaps Initiative). Financial Stability Board and International Monetary Fund.
Geske, R. (1977). The Valuation of Corporate Liabilities as Compound Options. Journal of Financial and Quantitative Analysis, 12(4), 541-552.
Gore, A., & Murthy, G. (2011). A Case of Corporate Deceit: The Enron Way. Scientific e-Journal of Management Science, 8(7), 3-38.
Hotchkiss, E. S. (1995). Postbankruptcy Performance and Management Turnover. Journal of Finance, 50(1), 3–21.
Ian, A. C., & Sergei, A. D. (2007). Estimating the Cost of Risky Debt. Journal of Applied Corporate Finance, 19(3), 90-95.
Jarrow, R., Lando, D., & Turnbull, S. M. (1997). A Markov Model for the Term Structure of Credit Risk Spreads. Review of Financial Studies, 10(2), 481-523.
Jarrow, R., & Turnbull, S. M. (1995). Pricing Derivatives on Financial Securities Subject to Credit Risk. Journal of Finance, 50(1), 53-85.
Leland, H. E. (1994). Corporate Debt Value, Bond Covenants, and Optimal Capital Structure. Journal of Finance, 49(4), 1213-1252.
Lyuu, Y.-D. (2002). Financial Engineering & Computation: Principles, Mathematics, Algorithms. Cambridge University Press.
Merton, R. C. (1974). On the Pricing of Corporate Debt: The Risk Structure of Interest Rates. Journal of Finance, 29(2), 449-470.
Ronn, E. I., & Verma, A. K. (1986). Pricing Risk-Adjusted Deposit Insurance: An
Option-Based Model. Journal of Finance, 41(4), 871-95.
Rubinstein, M. (1994). Implied Binomial Trees. Journal of Finance, 49(3), 771-818.
Wang, C.-J., Dai, T.-S., & Lyuu, Y.-D. (2014). Evaluating Corporate Bonds with Complicated Liability Structures and Bond Provisions. European Journal of Operational Research, 237(2), 749-757.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21592-
dc.description.abstract信用風險模型可以分為縮減式模型(reduced-form)與結構式模型(structural form)兩類。本篇論文主要使用結構式模型並加入移動邊界選擇權的概念,從而提出了一種新的預測公司破產的方法。我們採取了非常彈性且有效率的演算法去找到這些隱含邊界並把這些邊界視為公司的破產邊界。在一些美國知名的公司的個案分析上也顯示出我們的隱含邊界對於即將到來的破產事件有非常高的資訊含量。更重要的是,本論文提出的利用隱含邊界預測破產的方法有非常高的精確率跟準確率,這個新方法不只讓破產機率變得可以操作也有非常扎實的財務意涵。zh_TW
dc.description.abstractCredit risk models can be classified into reduced-form or structural form. This thesis focuses on the structural model with the idea of moving-barrier options to develop a new default prediction scheme. We adopt a flexible and efficient tree algorithm to find the implied barriers to serve as a company's default boundary. Case studies of some well-known companies in the U.S. suggest the implied barrier is very informative about coming defaults. For listed U.S. companies between 1991 and 2018, the proposed implied barrier-based default prediction performs very well in terms of precision and accuracy. This new prediction methodology not only makes the default probabilities operative but is also founded upon good financial rationale.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:39:02Z (GMT). No. of bitstreams: 1
ntu-108-R06723032-1.pdf: 1077035 bytes, checksum: fec9a0c2d4840cee50d34f9a52de4e4b (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
Contents iv
List of Figures v
List of Tables vi
1 Introduction 1
2 Model and Algorithms 5
3 Experiments 9
3.1 Data.............................9
3.2 Case Studies..........................10
3.2.1 Enron..........................11
3.2.2 Federal Home Loan Mortgage.................13
3.3.3 Bear Stearns........................14
3.3 Default Prediction........................19
4 Conclusion 23
Reference 24
dc.language.isoen
dc.title隱含界限做為破產邊界 --- 演算法與其實證zh_TW
dc.titleImplied Barrier as Default Boundary --- Algorithms and Empirical Studiesen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王釧茹(Chung-Ju Wang),金國興(Guo-Xing Jin),張經略(Ching-Luei Chang),鄧惠文(Huei-Wen Teng)
dc.subject.keyword結構式模型,隱含界限,破產邊界,破產機率,破產預測,zh_TW
dc.subject.keywordStructural Model,Implied Barrier,Default Boundary,Default Probability,Default Prediction,en
dc.relation.page26
dc.identifier.doi10.6342/NTU201901400
dc.rights.note未授權
dc.date.accepted2019-07-15
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept財務金融學研究所zh_TW
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
1.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved