請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21588
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林逸彬(Yi-Pin Lin) | |
dc.contributor.author | Ze-Xuan Tan | en |
dc.contributor.author | 譚澤軒 | zh_TW |
dc.date.accessioned | 2021-06-08T03:38:54Z | - |
dc.date.copyright | 2019-07-23 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-07-16 | |
dc.identifier.citation | Ankley, G.T., Di Toro, D.M., Hansen, D.J. and Berry, W.J. (1996) Technical basis and proposal for deriving sediment quality criteria for metals. Environmental Toxicology and Chemistry 15(12), 2056-2066.
Ankley, G.T., Thomas, N.A., Di Toro, D.M., Hansen, D.J., Mahony, J.D., Berry, W.J., Swartz, R.C., Hoke, R.A., Garrison, A.W., Allen, H.E. and Zarba, C.S. (1994) Assessing potential bioavailability of metals in sediments: A proposed approach. Environmental Management 18(3), 331-337. Atkinson, C.A., Jolley, D.F. and Simpson, S.L. (2007) Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere 69(9), 1428-1437. Bryan, G.W. and Langston, W.J. (1992) Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environmental Pollution 76(2), 89-131. Cordell, D., Drangert, J.-O. and White, S. (2009) The story of phosphorus: Global food security and food for thought. Global Environmental Change 19(2), 292-305. Davar, F., Mohammadikish, M., Loghman-Estarki, M.R. and Masteri-Farahani, M. (2014) Synthesis of micro-and nanosized PbS with different morphologies by the hydrothermal process. Ceramics International 40(6), 8143-8148. Davis, B.S. and Birch, G.F. (2011) Spatial distribution of bulk atmospheric deposition of heavy metals in metropolitan Sydney, Australia. Water Air and Soil Pollution 214(1-4), 147-162. De Giudici, G., Rossi, A., Fanfani, L. and Lattanzi, P. (2005) Mechanisms of galena dissolution in oxygen-saturated solutions: Evaluation of pH effect on apparent activation energies and mineral-water interface. Geochimica et Cosmochimica Acta 69(9), 2321-2331. De Giudici, G. and Zuddas, P. (2001) In situ investigation of galena dissolution in oxygen saturated solution: Evolution of surface features and kinetic rate. Geochimica et Cosmochimica Acta 65(9), 1381-1389. Di Toro, D.M., Mahony, J.D., Hansen, D.J., Scott, K.J., Carlson, A.R. and Ankley, G.T. (1992) Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environmental Science & Technology 26(1), 96-101. Dong, J., Xia, X., Wang, M., Xie, H., Wen, J. and Bao, Y. (2016) Effect of recurrent sediment resuspension-deposition events on bioavailability of polycyclic aromatic hydrocarbons in aquatic environments. Journal of Hydrology 540, 934-946. Fornasiero, D., Li, F., Ralston, J. and Smart, R.S.C. (1994) Oxidation of Galena Surfaces: I. X-ray photoelectron spectroscopic and dissolution kinetics studies. Journal of Colloid and Interface Science 164(2), 333-344. Hafsteinsdóttir, E.G., Camenzuli, D., Rocavert, A.L., Walworth, J. and Gore, D.B. (2015) Chemical immobilization of metals and metalloids by phosphates. Applied Geochemistry 59, 47-62. Helgeson, H.C. (1978) Summary and critique of the thermodynamic properties of rock-forming minerals, Kline Geology Laboratory, Yale University. Hodson, M.E., Valsami-Jones, É. and Cotter-Howells, J.D. (2000) Bonemeal additions as a remediation treatment for metal contaminated soil. Environmental Science & Technology 34(16), 3501-3507. Jørgensen, B.B. (1977) The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark)1. Limnology and Oceanography 22(5), 814-832. Jansson, M. and Ivarsson, H. (1994) Causes of acidity in the River Lillån in the coastal zone of central northern Sweden. Journal of Hydrology 160(1), 71-87. Kang, M., Tian, Y., Peng, S. and Wang, M. (2019) Effect of dissolved oxygen and nutrient levels on heavy metal contents and fractions in river surface sediments. Science of the Total Environment 648, 861-870. Karami, H., Ghasemi, M. and Matini, S. (2013) Synthesis, characterization and application of lead sulfide nanostructures as ammonia gas sensing agent. International Journal of Electrochemical Science 8(10), 11661-11679. Lang, M., Li, P. and Yan, X. (2013) Runoff concentration and load of nitrogen and phosphorus from a residential area in an intensive agricultural watershed. Science of the Total Environment 458-460, 238-245. Langmuir, D., Chrostowski, P., Vigneault, B. and Chaney, R. (2004) Issue Paper on the Envionmental Chemistry of Metals. Li, H., Shi, A., Li, M. and Zhang, X. (2013) Effect of pH, temperature, dissolved oxygen, and flow rate of overlying water on heavy metals release from storm sewer sediments. Journal of Chemistry 2013, 1-11. Liu, Y., Zou, X., Duan, D., Luo, L., Chen, S. and Zhong, L. (2019) Nucleation and morphology of sodium molybdate dihydrate from NaOH solution. Journal of Crystal Growth 506, 102-107. Lynch, S.F.L., Batty, L.C. and Byrne, P. (2018) Environmental risk of severely Pb-contaminated riverbank sediment as a consequence of hydrometeorological perturbation. Science of the Total Environment 636, 1428-1441. Ma, Q.Y., Logan, T.J. and Traina, S.J. (1995) Lead immobilization from aqueous-solutions and contaminated soils using phosphate rocks. Environmental Science & Technology 29(4), 1118-1126. Ma, Q.Y., Traina, S.J., Logan, T.J. and Ryan, J.A. (1993) In situ lead immobilization by apatite. Environmental Science & Technology 27(9), 1803-1810. Mackenzie, F. and Garrels, R.M. (1971) Evolution of sedimentary rocks: New York. Miretzky, P. and Fernandez-Cirelli, A. (2008) Phosphates for Pb immobilization in soils: a review. Environmental Chemistry Letters 6(3), 121-133. Morse, J.W. and Luther, G.W. (1999) Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochimica et Cosmochimica Acta 63(19-20), 3373-3378. Novotny, V. (1999) Integrating diffuseinonpoint pollution control and water body restoration into watershed management. Journal of the American Water Resources Association 35(4), 717-727. Nriagu, J.O. (1974) Lead orthophosphates—IV Formation and stability in the environment. Geochimica et Cosmochimica Acta 38(6), 887-898. Pan, K. and Wang, W.X. (2012) Trace metal contamination in estuarine and coastal environments in China. Science of the Total Environment 421-422, 3-16. Peterson, G.S., Ankley, G.T. and Leonard, E.N. (1996) Effect of bioturbation on metal-sulfide oxidation in surficial freshwater sediments. Environmental Toxicology and Chemistry 15(12), 2147-2155. Rickard, D. and Luther, G.W., 3rd (2007) Chemistry of iron sulfides. Chemical Reviews 107(2), 514-562. Ryan, J.A., Zhang, P., Hesterberg, D., Chou, J. and Sayers, D.E. (2001) Formation of chloropyromorphite in a lead-contaminated soil amended with hydroxyapatite. Environmental Science & Technology 35(18), 3798-3803. Sabiha-Javied, Mehmood, T., Chaudhry, M.M., Tufail, M. and Irfan, N. (2009) Heavy metal pollution from phosphate rock used for the production of fertilizer in Pakistan. Microchemical Journal 91(1), 94-99. Scheckel, K.G. and Ryan, J.A. (2002) Effects of aging and pH on dissolution kinetics and stability of chloropyromorphite. Environmental Science & Technology 36(10), 2198-2204. Simpson, S.L., Apte, S.C. and Batley, G.E. (1998) Effect of short-term resuspension events on trace metal speciation in polluted anoxic sediments. Environmental Science & Technology 32(5), 620-625. Snelgrove, P.V.R. (1999) Getting to the bottom of marine biodiversity: sedimentary habitats - ocean bottoms are the most widespread habitat on Earth and support high biodiversity and key ecosystem services. Bioscience 49(2), 129-138. Snoeyink, V.L. and Jenkins, D. (1980) Water Chemistry, Wiley. Stack, A.G., Erni, R., Browning, N.D. and Casey, W.H. (2004) Pyromorphite growth on lead-sulfide surfaces. Environmental Science & Technology 38(21), 5529-5534. Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K. and Sutton, D.J. (2012) Heavy metal toxicity and the environment. Experientia Supplementum 101, 133-164. Wieland, E., Wehrli, B. and Stumm, W. (1988) The coordination chemistry of weathering: III. A generalization on the dissolution rates of minerals. Geochimica et Cosmochimica Acta 52(8), 1969-1981. Xu, Y. and Schwartz, F.W. (1994) Lead immobilization by hydroxyapatite in aqueous solutions. Journal of Contaminant Hydrology 15(3), 187-206. Zhang, S., Li, J., Wang, Y. and Hu, G. (2004) Dissolution kinetics of galena in acid NaCl solutions at 25—75 °C. Applied Geochemistry 19(6), 835-841. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21588 | - |
dc.description.abstract | 在厭氧環境的底泥裡,重金屬以穩定的硫化金屬形式存在。然而,近年來因氣候變遷造成暴雨事件頻繁增加,原本處於厭氧環境的底泥受到物理性擾動後,可能使水中溶氧提升,進而導致硫化金屬受到氧化溶解,提高重金屬被人體攝入之風險。此外,含磷之農業廢水亦會受到暴雨沖刷而進入自然水體,磷酸鹽可能會與重金屬離子產生沉澱,使重金屬再度以穩定形式存在於環境中。本研究利用連續曝氣裝置,模擬因暴雨事件引起之溶氧量改變,造成不同硫化鉛溶解狀況,研究結果顯示不同溶氧量對於硫化鉛之溶解並無顯著影響,pH值才是造成硫化鉛溶解速率有所差異的主因。在水中加入不同濃度的磷酸鹽後,水中鉛濃度驟降至低於方法偵測極限,且添加越高濃度的磷酸鹽,鉛濃度從低於偵測極限到再度被檢出的時間也將延長。含磷污染源與水體具有不同距離,經由暴雨沖刷進入水體之時間也不同,故磷酸鹽在不同的時間被加入實驗溶液以模擬上述情形,但鉛濃度可被測得的時間並未受到不同磷酸鹽加入時間影響。本研究亦透過掃描式電子顯微鏡觀察是否有磷酸-金屬沉澱物產生,結果顯示確實有磷氯鉛礦(Pb5(PO4)3Cl)或氫氧磷鉛石(Pb5(PO4)3OH)之結構,其尺寸隨加入的磷酸鹽濃度和加入磷酸鹽時間增加而加大。 | zh_TW |
dc.description.abstract | In natural water systems, heavy metals are fixed by metal sulfides in anoxic sediments. After physical disturbances, metal sulfides can be suspended into oxic water column and facilitate their oxidative dissolution. The remobilization of lead could be affected by water chemistry and constituents such as phosphate in runoff or wastewater discharge. In this study, a batch reactor system with continual aeration was used to simulate the re-suspension of PbS during a storm event with different dissolved oxygen (DO), pH and phosphate addition. The results demonstrated that the rate of PbS dissolution was mainly controlled by pH instead of DO. After phosphate addition, Pb(II) decreased immediately to not detected (ND) and the period of ND was longer when a higher concentration of phosphate was added. To simulate sources of pollution which have different distances from the river, different time of phosphate addition was conducted. The results showed that the period of ND Pb(II) was the same no matter when phosphate was added. The presence of soluble lead which is toxic to aquatic life was hindered by phosphate due to the formation of chloropyromorphite (Pb5(PO4)3Cl) hydroxypyromorphite (Pb5(PO4)3OH) as observed by scanning electron microscope. The SEM images showed that larger size of Pb5(PO4)3Cl crystals were formed if a higher concentration of phosphate and a later time of phosphate was introduced. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:38:54Z (GMT). No. of bitstreams: 1 ntu-108-R06541125-1.pdf: 3038636 bytes, checksum: d147b93dc1bfbb1856fd390d7b7b8669 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 摘要 I
Abstract II Chapter 1 Introduction 1 1.1 Background 1 1.2 Research objectives 2 Chapter 2 Literature Review 3 2.1 Metal sulfides in the environment 3 2.2 Proton induced dissolution of PbS 4 2.3 Oxidative dissolution of Metal sulfides 6 2.4 Interactions between lead ions and phosphate 8 Chapter 3 Materials and Methods 10 3.1 Chemicals and solution preparation 10 3.2 Experimental apparatus and methods 11 3.3 Analytical methods 14 Chapter 4 Results and Discussion 15 4.1 Dissolution rate law for PbS under different pH and DO 15 4.2 Effects of phosphate addition on PbS dissolution 25 4.3 Morphology change of PbS 46 Chapter 5 Conclusions and Recommendations 53 5.1 Conclusions 53 5.2 Recommendations 54 References 55 | |
dc.language.iso | en | |
dc.title | 模擬於暴雨中受到農業逕流影響所造成底泥硫化鉛之溶解與轉變 | zh_TW |
dc.title | Dissolution and Transformation of Sedimental Galena (PbS) in Simulated Storm Influenced by Agriculture Runoff | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔣本基(Pen-Chi Chiang),席行正(Hsing-Cheng Hsi) | |
dc.subject.keyword | 方鉛礦,重金屬,溶解動力學,磷酸鹽,磷氯鉛礦, | zh_TW |
dc.subject.keyword | Galena,heavy metal,dissolution kinetics,phosphate,pyromorphite, | en |
dc.relation.page | 61 | |
dc.identifier.doi | 10.6342/NTU201901517 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2019-07-16 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 2.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。