請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21579完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李心予(Hsinyu Lee) | |
| dc.contributor.author | Horng-Shen Chen | en |
| dc.contributor.author | 陳宏申 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:38:36Z | - |
| dc.date.copyright | 2019-07-23 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-16 | |
| dc.identifier.citation | 1. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nature Review Drug Discovery. 2010 Mar;9(3):203-14
2. https://www.israel21c.org/researchers-use-ai-to-cut-drug-development-time-and-cost/, Researchers use AI to cut drug-development time and cost, Sep 20, 2018 3. http://adisintegrinandmetalloproteinase17.blogspot.com/2016/07/blog-post_18.html, 技術轉移簡介- 技轉知於生技產業的重要性 4. https://press.trendforce.com.tw/press/20170929-3647.html, TrendForce: AI與大數據輔助藥物開發,新藥開發進入3.0時代 5. https://www.rdkit.org/, RDKit: Open-Source Cheminformatics Software 6. 用TensorFlow提早進入人工智慧的未來世界,李嘉璇 著,2017 7. TensorFlow+Keras深度學習 人工智慧實務應用,林大貴 著,2017 8. Osimertinib: A third-generation tyrosine kinase inhibitor for treatment of epidermal growth factor receptor-mutated non-small cell lung cancer with the acquired Thr790Met mutation. Journal of Oncology Pharmacy Practice. 2018, Vol. 24(5) 379-388 9. EGFR-TKIs in non-small-cell lung cancer: focus on clinical pharmacology and mechanisms of resistance. Pharmacogenomics. 2018, 19(8), 727-740 10. Fisrt- and Second-Generation EGFR-TKIs Are All Replaced to Osimertinib in Chemo-Naïve EGFR Mutation-Positive Non-Small Cell Lung Cancer. International Journal of Molecular Sciences. 2019, 20, 146 11. https://www.yourgenome.org/facts/how-are-drugs-designed-and-developed, An illustration showing the different stages involved in developing a drug. Image credit: Genome Research Limited 12. https://www.the-scientist.com/infographics/infographic-the-cost-of-drug-development-32088, Expensive clinical trials and few drug approvals can drive up drug prices for consumers. The Scientist, Feb 1, 2017 13. Clinical Development Success Rates 2006-2015. Bio Industry Analysis, June 2016 14. 新藥研發模式白皮書 2016. Deloitte 勤業眾信, 2016 15. https://www.biopharmadive.com/news/spotlight-AI-Pfizer-machine-learning-artificial-intelligence/528104/, Pharma and AI? Let's try augmented intelligence first. BiopharmaDIVE, July 23, 2018 16. http://technews.tw/2016/12/06/ibm-watson-pfizer-cancer-medicine/, IBM Watson 聯合輝瑞,將機器學習用於癌症藥物發現。Dec 06, 2016 17. https://technews.tw/2016/11/01/ibm-watson-analytics-may-help-decisions-making-in-five-years/, 再過5年,IBM Watson的AI分析工具將成為人們做決策的靠山。Nov 01, 2016 18. https://www.chinanews.com/jk/2018/05-11/8511565.shtml, 全國手機'婦女兒童健康人工智能發展聯合實驗室'成立。May 11, 2018 19. 人工智慧在藥物開發價值鏈之技術應用。DCB產資組 & ITIS 研究團隊整理。June, 2018 20. https://kknews.cc/zh-tw/tech/l9zoqqz.html, CB Insights: 2019年全球人工智慧行業機會在哪?Mar 03, 2019 21. http://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=14050, CB Insights公布: AI 100新創2018市場。Dec 19, 2017 22. Concepts and applications of molecular similarity. Johnson MA, Maggiora GM. New York: Wiley; 1990 23. https://web.archive.org/web/20110715135019/http:/www.qsarworld.com/insilico-chemistry-fingerprint-based-similarity.php/, Fingerprint-based Similarity. 24. http://www.daylight.com/dayhtml/doc/theory/theory.finger.html, Fingerprints - Screening and Similarity. 25. 4D Flexible Atom-Pairs: An efficient probabilistic conformational space comparison for ligand-based virtual screening. Journal of Cheminformatics. 2011 3:23 26. https://kknews.cc/zh-tw/science/xrk3rrr.html, 分子相似性的應用。Aug 24, 2017 27. https://kknews.cc/science/ka623er.html, 分子形狀相似性及其應用。Sep 26, 2017 28. https://kknews.cc/science/3mpyray.html, 基於2D和3D分子相似性的虛擬篩選。Aug 23, 2017 29. https://wiki.mbalib.com/zh-tw/%E6%8B%93%E6%89%91%E5%AD%A6, 拓樸學(Topology) 30. https://www.rdkit.org/docs/GettingStartedInPython.html, Getting Started with the RDKit in Python. 31. http://www.daylight.com/meetings/summerschool98/course/basics/fp.html, Daylight Fingerprints. 32.http://www.dalkescientific.com/writings/NBN/fingerprints.html, Fingerprints. 33.https://docs.chemaxon.com/display/docs/Extended+Connectivity+Fingerprint+ECFP, Extended Connectivity Fingerprint ECFP. Jan 30, 2019 34. https://ourworldindata.org/grapher/total-cancer-deaths-by-type, Cancer deaths by types, World, 2017 35. Molecular Similarity: a key technique in molecular informatics. Organic & Biomolecular Chemistry. 2004, 2, 3204-18 36. Afatinib: emerging next-generation tyrosine kinase inhibitor for NSCLC. OncoTargets and Therapy. 2013:6 135-43 37. Drug-Drug Interactions, Safety, and Pharmacokinetics of EGFR Tyrosine Kinase Inhibitors for the Treatment of Non-Small Cell Lung Cancer. Journal of Advanced Practitioner in Oncology. 2018 Mar;9(2) 189-200 38. Determining EGFR-TKI sensitivity of G719X and other uncommon EGFR mutations in non-small cell lung cancer: Perplexity and solution (Review). Oncology Reports. 2017 Mar; 37(3): 1347-1358 39. https://www.drugbank.ca/, Drugbank. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21579 | - |
| dc.description.abstract | 新藥研發廢日曠時,整個新藥開發的流程包括了早期候選藥物的探索與療效確立,以及產品開發之臨床前動物試驗與臨床人體試驗。在證實臨床療效及安全性之後,藥物才能進行查驗登記並取證上市。整體新藥研發平均約費時10到15年,且同時須擔負龐大之研發經費與承受高失敗率的風險。由於新藥的研發相當耗時,若能縮短早期藥物評估的時間與增進潛力候選藥物篩選的效率,則能加速整體藥物開發流程也可以減少研發成本。
化學相似性定律描述結構相似的化學分子享有相似的化學活性。分子相似性討論的是兩個化學分子在結構上的相似程度,相似性定律是藥物發展的重要理論基礎之一。現今有數個不同的分子相似性模式被用來預測藥物的活性評估,包括該化學分子的藥物動力及代謝分佈等特性。 應用分子相似性的比較以輔助候選藥物活性篩選可提高臨床前藥物開發之成功率,然而目前結合AI系統與分子相似性的比較來有效篩選出候選藥物的分析研究並未被深入探討。本論文研究即是藉找出最佳化學分子相似性特徵之衡量指標,結合人工智慧並將其應用在候選藥物的篩選,輔助藥物開發。期望在新藥探索階段即結合AI以更有效率地預測並篩選出有療效潛力的候選藥物分子結構,不僅可縮短藥物在新藥初期階段的研發時間,並可加速研發流程與減少整體研發成本。 | zh_TW |
| dc.description.abstract | The whole process of new drug development includes the exploration and efficacy study of early drug candidates, as well as preclinical animal tests and clinical human trials for product development. After confirming the clinical efficacy and safety, the drug can then be registered for marketing. It takes an average of 10 to 15 years to develop a new drug, and at the same time has to bear the huge R&D expenditure and the risk of high failure rate. Since the development of new drugs is time consuming, shortening the time for early drug evaluation and drug screening for candidates can not only speed up the process of drug development but also reduce the total cost of research and development.
The law of similarity describes that chemical molecules of similar structures share similar chemical activities. Molecular similarity refers to the degree of structural similarity between two chemical molecules. The law of similarity is one of the important theoretical foundations for drug development. Several models of molecular similarity are used during drug development to predict candidate drug activities, including pharmacokinetics, toxicology and metabolic distribution. The application of molecular similarity comparison to assist drug candidate screening can improve the success rate of preclinical drug development. However, the involvement of AI system to effectively improve this process of candidate selection has not been discussed in depth. The research of this thesis is to find a better model of chemical molecular similarity combined with artificial intelligence to assist selection of candidate drugs. It is expected that the combination of AI in the new drug exploration stage can efficiently predict and screen out drug candidates with ideal therapeutic potential, which will not only shorten the time of early stage drug development, but also accelerate the research and development process and reduce the overall research and development costs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:38:36Z (GMT). No. of bitstreams: 1 ntu-108-P06e43009-1.pdf: 4333829 bytes, checksum: d7ccbcfc867f452e0f61b901c79db463 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 viii 第一章 研究背景與目的 1 第一節. 研究背景 人工智慧(AI)在新藥開發上之應用 1 第二節. 研究動機 利用化學分子相似性的比較來輔助與加速人工智慧(AI)藥物開發 3 第三節. 研究方法 5 第二章 文獻探討 7 第一節. 傳統的早期新藥開發模式 7 第二節. 導入AI人工智慧以提高藥物開發之效能 9 第三節. 藉化學分子相似性的分析比較,找出最佳相似性特徵之衡量指標,以提高藥物開發之準確率 11 第三章 藥物分子相似性衡量的方法種類與指標 13 第一節. 分子相似性 13 第二節. 藥物分子相似性衡量的方法種類 15 第三節. 拓撲指紋Topological Fingerprints 16 第四節. MACCS Keys 17 第五節. Morgan Fingerprints (Circular Fingerprints) 19 第四章 藉化學結構的相似性比較分析輔助AI人工智慧在臨床前藥物開發之效能 20 第一節. 肺癌與表皮生長因子接受器(Epidermal Growth Factor Receptor,EGFR)基因的突變 20 第二節. 肺癌抗腫瘤藥物表皮生長因子接受器酪胺酸激酶抑制劑EGFR TKI 23 第三節. 使用RDKit分析比較EGFR標靶藥物結構相似性 25 第四節. RDKit 結構相似性模式的比較分析結果 28 第五節. 使用RDKit以及Drugbank化學分子資料庫套件來模擬篩選潛力分子 31 第六節. 使用RDKit 以及Drugbank 化學分子資料庫套件來模擬篩選潛力分子之結果 36 第五章 結論 38 第一節. 研究結果討論 38 第二節. 研究結果的未來應用建議 40 參考文獻 42 | |
| dc.language.iso | zh-TW | |
| dc.title | 輔助人工智慧藥物開發之最佳化學分子相似性特徵衡量指標 | zh_TW |
| dc.title | Finding the best indicator of chemical molecular similarity to assist AI drug discovery | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 何佳安,黃恆獎 | |
| dc.subject.keyword | 新藥開發,化學分子相似性,人工智慧, | zh_TW |
| dc.subject.keyword | New Drug Development,Chemical Molecular Similarity,Artificial Intelligence, | en |
| dc.relation.page | 44 | |
| dc.identifier.doi | 10.6342/NTU201901565 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2019-07-17 | |
| dc.contributor.author-college | 進修推廣學院 | zh_TW |
| dc.contributor.author-dept | 生物科技管理碩士在職學位學程 | zh_TW |
| 顯示於系所單位: | 生物科技管理碩士在職學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 4.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
