請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21543
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林敏聰(Minn-Tsong Lin) | |
dc.contributor.author | Wen-Teng Lin | en |
dc.contributor.author | 林文騰 | zh_TW |
dc.date.accessioned | 2021-06-08T03:37:22Z | - |
dc.date.copyright | 2021-02-22 | |
dc.date.issued | 2021 | |
dc.date.submitted | 2021-01-21 | |
dc.identifier.citation | [1] ShengYueh Weng. (2019). Investigate spin injection and transport properties in organic semiconductor PTCDA by spin pumping and spin Seebeck effect, (Unpublished master thesis),National Taiwan University, Taipei. [2] ErJia Guo, Joel Cramer, Andreas Kehlberger, Ciaran A Ferguson, Donald A MacLaren, Gerhard Jakob, and Mathias Kläui. Influence of thickness and interface on the low temperature enhancement of the spin seebeck effect in yig films. Physical Review X, 6(3):031012, 2016. [3] Qiuxia Lu, Sun Yin, Teng Gao, Wei Qin, Shijie Xie, Fanyao Qu, and Avadh Saxena. Spin transport based on exchange coupling in doped organic polymers. The Journal of Physical Chemistry Letters, 11(3):1087–1092, 2020. [4] Matthieu Dvorak, Markus Müller, Tobias Knoblauch, Oliver Bünermann, Alexandre Rydlo, Stefan Minniberger, Wolfgang Harbich, and Frank Stienkemeier. Spectroscopy of ptcda attached to rare gas samples: clusters vs. bulk matrices. i. absorption spectroscopy. arXiv preprint arXiv:1206.2783, 2012. [5] Wikipedia. Basis p orbitals of benzene, howpublished = https://en.wikipedia.org/wiki/conjugated_system, title = basis p orbitals of benzene, year = 2020. [6] Tao Liu, Houchen Chang, Vincent Vlaminck, Yiyan Sun, Michael Kabatek, Axel Hoffmann, Longjiang Deng, and Mingzhong Wu. Ferromagnetic resonance of sputtered yttrium iron garnet nanometer films. Journal of Applied Physics, 115(17):17A501, 2014. [7] FengJen Chang, Jauyn Grace Lin, and SsuYen Huang. Robust spin current generated by the spin seebeck effect. Physical Review Materials, 1(3):031401, 2017. [8] A Azevedo, O Alves Santos, GA Fonseca Guerra, RO Cunha, R RodríguezSuárez, and SM Rezende. Competing spin pumping effects in magnetic hybrid structures. Applied Physics Letters, 104(5):052402, 2014. [9] V Dediu, M Murgia, FC Matacotta, C Taliani, and S Barbanera. Room temperature spin polarized injection in organic semiconductor. Solid State Communications, 122(34): 181–184, 2002. [10] Yaohua Liu, Taegweon Lee, Howard E Katz, and Daniel H Reich. Spin valve effects in hybrid organicinorganic devices. APS, pages V25–002, 2007. [11] Yaohua Liu, Taegweon Lee, Howard E Katz, and Daniel H Reich. Effects of carrier mobility and morphology in organic semiconductor spin valves. Journal of Applied Physics, 105(7):07C708, 2009. [12] KaiShin Li, YinMing Chang, Santhanam Agilan, JhenYong Hong, JungChi Tai, WenChung Chiang, Keisuke Fukutani, PA Dowben, and MinnTsong Lin. Organic spin valves with inelastic tunneling characteristics. Physical Review B, 83(17):172404, 2011. [13] Charles Kittel and Paul McEuen. Introduction to solid state physics, volume 8. Wiley New York, 1976. [14] LALE Landau and Evgeny Lifshitz. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. In Perspectives in Theoretical Physics, pages 51–65. Elsevier, 1992. [15] Thomas L Gilbert. A phenomenological theory of damping in ferromagnetic materials. IEEE transactions on magnetics, 40(6):3443–3449, 2004. [16] Charles Kittel. On the theory of ferromagnetic resonance absorption. Physical review, 73(2):155, 1948. [17] Ryan A O’Dell, Adam B Phillips, Daniel G Georgiev, John G Jones, Gail J Brown, and Michael J Heben. Substrate heating effects on composition, structure and ferromagnetic resonance properties of cofeb thin films. Journal of Magnetism and Magnetic Materials, 476:516–523, 2019. [18] Charles Kittel. On the gyromagnetic ratio and spectroscopic splitting factor of ferromagnetic substances. Physical Review, 76(6):743, 1949. [19] Shigemi Mizukami, Yasuo Ando, and Terunobu Miyazaki. The study on ferromagnetic resonance linewidth for nm/80nife/nm (nm= cu, ta, pd and pt) films. Japanese journal of applied physics, 40(2R):580, 2001. [20] S Mizukami, Y Ando, and T Miyazaki. Effect of spin diffusion on gilbert damping for a very thin permalloy layer in cu/permalloy/cu/pt films. Physical Review B, 66(10):104413, 2002. [21] Robert D McMichael and Pavol Krivosik. Classical model of extrinsic ferromagnetic resonance linewidth in ultrathin films. IEEE transactions on magnetics, 40(1):2–11, 2004. [22] JE Hirsch. Spin hall effect. Physical Review Letters, 83(9):1834, 1999. [23] K Uchida, S Takahashi, K Harii, J Ieda, W Koshibae, Kazuya Ando, S Maekawa, and E Saitoh. Observation of the spin seebeck effect. Nature, 455(7214):778–781, 2008. [24] Yaroslav Tserkovnyak, Arne Brataas, and Gerrit EW Bauer. Spin pumping and magnetization dynamics in metallic multilayers. Physical Review B, 66(22):224403, 2002. [25] E Saitoh, M Ueda, H Miyajima, and G Tatara. Conversion of spin current into charge current at room temperature: Inverse spin hall effect. Applied physics letters, 88(18):182509, 2006. [26] Kazuya Ando, Saburo Takahashi, Junichi Ieda, Yosuke Kajiwara, Hiroyasu Nakayama, Tatsuro Yoshino, Kazuya Harii, Yasunori Fujikawa, M Matsuo, S Maekawa, et al. Inverse spin hall effect induced by spin pumping in metallic system. Journal of applied physics, 109(10):103913, 2011. [27] O Mosendz, JE Pearson, FY Fradin, GEW Bauer, SD Bader, and A Hoffmann. Quantifying spin hall angles from spin pumping: Experiments and theory. Physical review letters, 104(4):046601, 2010. [28] Z Feng, J Hu, L Sun, B You, D Wu, J Du, W Zhang, A Hu, Y Yang, DM Tang, et al. Spin hall angle quantification from spin pumping and microwave photoresistance. Physical Review B, 85(21):214423, 2012. [29] T McGuire and RL Potter. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Transactions on Magnetics, 11(4):1018–1038, 1975. [30] T Yoshino, Kazuya Ando, K Harii, H Nakayama, Y Kajiwara, and E Saitoh. Universality of the spin pumping in metallic bilayer films. Applied Physics Letters, 98(13):132503, 2011. [31] Z Qiu, Kazuya Ando, K Uchida, Y Kajiwara, R Takahashi, H Nakayama, T An, Y Fujikawa, and E Saitoh. Spin mixing conductance at a wellcontrolled platinum/yttrium iron garnet interface. Applied Physics Letters, 103(9):092404, 2013. [32] B Heinrich, C Burrowes, E Montoya, B Kardasz, E Girt, YoungYeal Song, Yiyan Sun, and Mingzhong Wu. Spin pumping at the magnetic insulator (yig)/normal metal (au) interfaces. Physical review letters, 107(6):066604, 2011. [33] M Tokaç, SA Bunyaev, GN Kakazei, DS Schmool, D Atkinson, and AT Hindmarch. Interfacial structure dependent spin mixing conductance in cobalt thin films. Physical review letters, 115(5):056601, 2015. [34] Praveen Deorani and Hyunsoo Yang. Role of spin mixing conductance in spin pumping: Enhancement of spin pumping efficiency in ta/cu/py structures. Applied Physics Letters, 103(23):232408, 2013. [35] Tomohiro Taniguchi and Hiroshi Imamura. Enhancement of the gilbert damping constant due to spin pumping in noncollinear ferromagnet/nonmagnet/ferromagnet trilayer systems. Physical Review B, 76(9):092402, 2007. [36] Satoru Emori, Alexei Matyushov, HyungMin Jeon, Christopher J Babroski, Tianxiang Nan, Amine M Belkessam, John G Jones, Michael E McConney, Gail J Brown, Brandon M Howe, et al. Spinorbit torque and spin pumping in yig/pt with interfacial insertion layers. Applied Physics Letters, 112(18):182406, 2018. [37] V Alek Dediu, Luis E Hueso, Ilaria Bergenti, and Carlo Taliani. Spin routes in organic semiconductors. Nature materials, 8(9):707–716, 2009. [38] ZhiGang Yu. Spinorbit coupling, spin relaxation, and spin diffusion in organic solids. Physical Review Letters, 106(10):106602, 2011. [39] Lidan Guo, Yang Qin, Xianrong Gu, Xiangwei Zhu, Qiong Zhou, and Xiangnan Sun. Spin transport in organic molecules. Frontiers in chemistry, 7:428, 2019. [40] SW Jiang, S Liu, P Wang, ZZ Luan, XD Tao, HF Ding, and D Wu. Exchangedominated pure spin current transport in alq 3 molecules. Physical Review Letters, 115(8):086601, 2015. [41] ZG Yu. Suppression of the hanle effect in organic spintronic devices. Physical review letters, 111(1):016601, 2013. [42] Kazuhiro Nishida, Yoshio Teki, and Eiji Shikoh. Pure spin current in a robust pigmentred film. arXiv preprint arXiv:1908.07730, 2019. [43] Mohammad Rezwan Habib, Hongfei Li, Yuhan Kong, Tao Liang, Sk Md Obaidulla, Shuang Xie, Shengping Wang, Xiangyang Ma, Huanxing Su, and Mingsheng Xu. Tunable photoluminescence in a van der waals heterojunction built from a mos 2 monolayer and a ptcda organic semiconductor. Nanoscale, 10(34):16107–16115, 2018. [44] XD Tao, Z Feng, BF Miao, L Sun, B You, D Wu, J Du, W Zhang, and HF Ding. The spin hall angle and spin diffusion length of pd measured by spin pumping and microwave photoresistance. Journal of Applied Physics, 115(17):17C504, 2014. [45] Xinde Tao, Qi Liu, Bingfeng Miao, Rui Yu, Zheng Feng, Liang Sun, Biao You, Jun Du, Kai Chen, Shufeng Zhang, et al. Selfconsistent determination of spin hall angle and spin diffusion length in pt and pd: The role of the interface spin loss. Science advances, 4(6):eaat1670, 2018. [46] O Mosendz, V Vlaminck, JE Pearson, FY Fradin, GEW Bauer, SD Bader, and A Hoffmann. Detection and quantification of inverse spin hall effect from spin pumping in permalloy/normal metal bilayers. Physical Review B, 82(21):214403, 2010. [47] Motoi Kimata, Daisuke Nozaki, Yasuhiro Niimi, Hiroyuki Tajima, and YoshiChika Otani. Spin relaxation mechanism in a highly doped organic polymer film. Physical Review B, 91(22):224422, 2015. [48] RN Edmonds, MR Harrison, and PP Edwards. Conduction electron spin resonance in metallic systems. Annual Reports Section” C”(Physical Chemistry), 82:265–308, 1985. [49] Hailong Wang, Chunhui Du, P Chris Hammel, and Fengyuan Yang. Spin current and inverse spin hall effect in ferromagnetic metals probed by y3fe5o12based spin pumping. Applied Physics Letters, 104(20):202405, 2014. [50] Yi Li, Wei Cao, Vivek P Amin, Zhizhi Zhang, Jonathan Gibbons, Joseph Sklenar, John Pearson, Paul M Haney, Mark D Stiles, William E Bailey, et al. Coherent spin pumping in a strongly coupled magnonmagnon hybrid system. Physical review letters, 124(11):117202, 2020. [51] Mikhail Kostylev, AA Stashkevich, AO Adeyeye, C Shakespeare, N Kostylev, Nils Ross, K Kennewell, Rhet Magaraggia, Y Roussigné, and RL Stamps. Magnetization pinning in conducting films demonstrated using broadband ferromagnetic resonance. Journal of Applied Physics, 108(10):103914, 2010. [52] Andreas Kehlberger, Kornel Richter, Mehmet C Onbasli, Gerhard Jakob, Dong Hun Kim, Taichi Goto, Caroline A Ross, Gerhard Götz, Günter Reiss, Timo Kuschel, et al. Enhanced magnetooptic kerr effect and magnetic properties of cey 2 fe 5 o 12 epitaxial thin films. Physical Review Applied, 4(1):014008, 2015. [53] MA Akhter, DJ Mapps, YQ Ma Tan, Amanda PetfordLong, and R Doole. Thickness and grainsize dependence of the coercivity in permalloy thin films. Journal of applied physics, 81(8):4122–4124, 1997. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21543 | - |
dc.description.abstract | 近十幾年來,自旋電子學成為了一個新興的領域,許多的材料被廣泛的研究並且運用在自旋閥、自旋幫浦系統以及磁性穿隧接面等元件中,其中,有著π共軛系統的有機分子因結合良好的載子傳輸特性與較低的自旋軌道耦合、低成本和柔韌性被視為相當具有潛力的材料,儘管這個領域發展迅速,但自旋在有機材料中的傳輸機制仍然在爭論中,這篇論文中,我們藉由改變自旋幫浦系統中的鐵磁材料,使得苝四甲酸二酐(PTCDA)表現出不同的自旋傳輸性質,實驗中使用的是常見的雙層及三層結構,鈀被鍍在上層作為自旋感測器,而PTCDA則被夾在鐵磁層與重金屬層之間,當我們使用鎳鐵做為自旋源時,自旋流如預期地穿過PTCDA並且經由逆自旋霍爾效應轉換為可被偵測的電壓,然而,當我們將鎳鐵換成釔鐵石榴石(YIG)時訊號消失了,藉由分析吉伯阻尼常數,我們可以進一步知道PTCDA改變了系統的自旋混合電導,這個結果使我們對於有機材料的自旋傳輸機制有更多的了解。 | zh_TW |
dc.description.abstract | In the past few decades, spintronics becomes a novel field and many materials have been widely studied in spin valve, spin pumping system, and magnetic tunnel junction. Among them, π –conjugated molecules are regarded as a potential material due to favorable carrier transport properties, low spin-orbital coupling, low-cost, and mechanical flexibility. Although this field has rapidly grown, the spin transport mechanism in organic material is still under debate. In this thesis, we demonstrate the different spin transport behavior of Perylene-3,4,9,10-tetracarboxylic dianhydride(PTCDA) in spin pumping systems by changing the ferromagnetic material. We used general bilayer and trilayer structures. Pd was deposited as the spin detector on the top layer and PTCDA act as barrier layer inserted between ferromagnetic layer and heavy metal. When permalloy is used as spin source, spin current can pass through PTCDA layer as expected and the inverse spin Hall voltage convert from spin current can be measured. However, if we replace permalloy with YIG, the spin pumping signal disappear. By analyzing Gilbert damping constant, we further resolve the change of spin mixing conductance after inserting PTCDA. The results will enable us to know more about the spin transport mechanism in organic material. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:37:22Z (GMT). No. of bitstreams: 1 U0001-2001202115354600.pdf: 6556878 bytes, checksum: e2746f0afff72b57b41a381ef37a22eb (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | 誌謝i 摘要iii Abstract iv List of Figures vii 1 Introduction 1 2 Basic Concepts 3 2.1 Spin Pumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Ferromagetic Resonance . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 Spin Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Spin Mixing Conductance . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Damping Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Organic Spintronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Apparatus 12 3.1 Physical Vapor Deposition System . . . . . . . . . . . . . . . . . . . . . 12 3.2 Magnetron Sputtering System . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 Thermal Evaporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4 ElectronBeam Evaporation . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.5 Ferromagnetic Resonance System . . . . . . . . . . . . . . . . . . . . . 17 4 Experimental Results and Discussion 18 4.1 Sample Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2 Spin Pumping in Pybased systems . . . . . . . . . . . . . . . . . . . . . 19 4.2.1 Standard Sample Measurement . . . . . . . . . . . . . . . . . . . 19 4.2.2 Signal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2.3 Spin Pumping in Py/PTCDA/Pd . . . . . . . . . . . . . . . . . . 21 4.2.4 Gilbert Damping Constant . . . . . . . . . . . . . . . . . . . . . 22 4.3 Spin Pumping in YIGbased systems . . . . . . . . . . . . . . . . . . . . 23 4.3.1 FMR of Singlecrytsal and Polycrystalline YIG . . . . . . . . . . 23 4.3.2 Spin Pumping of Different Crystallinity . . . . . . . . . . . . . . 24 4.3.3 Spin Pumping in YIG/PTCDA/Pd . . . . . . . . . . . . . . . . . 26 4.4 Spin Pumping in YIG/Py/PTCDA/Pd . . . . . . . . . . . . . . . . . . . 28 4.4.1 Inverse Spin Hall Signal in YIG/Py system . . . . . . . . . . . . 28 4.4.2 FMR Spectrum and Spin Pumping Measurement . . . . . . . . . 29 4.4.3 Gilbert Damping Constant . . . . . . . . . . . . . . . . . . . . . 30 5 Conclusion 33 Bibliography 35 | |
dc.language.iso | en | |
dc.title | π共軛分子苝四甲酸二酐在基於釔鐵石榴石以及鎳鐵合金的自旋幫浦系統中的自旋傳輸性質 | zh_TW |
dc.title | Spin Transport Property of π -Conjugated Molecule PTCDA in Spin Pumping Systems Based on YIG and Permalloy | en |
dc.type | Thesis | |
dc.date.schoolyear | 109-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 江文中(Wen-Chung Chiang),黃斯衍(Ssu-Yen Huang),林文欽(Wen-Chin Lin),江佩勳(Pei-Hsun Chiang) | |
dc.subject.keyword | 自旋幫浦,有機半導體,自旋傳輸, | zh_TW |
dc.subject.keyword | spin pumping,organic semiconductor,spin transport, | en |
dc.relation.page | 41 | |
dc.identifier.doi | 10.6342/NTU202100103 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2021-01-21 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 應用物理研究所 | zh_TW |
顯示於系所單位: | 應用物理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2001202115354600.pdf 目前未授權公開取用 | 6.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。