請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21538完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊曜宇 | |
| dc.contributor.author | Zi-Han Teoh | en |
| dc.contributor.author | 張子涵 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:37:13Z | - |
| dc.date.copyright | 2019-07-25 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-23 | |
| dc.identifier.citation | 1. Iafrate, A.J., et al., Detection of large-scale variation in the human genome. Nat Genet, 2004. 36(9): p. 949-51.
2. Feuk, L., A.R. Carson, and S.W. Scherer, Structural variation in the human genome. Nat Rev Genet, 2006. 7(2): p. 85-97. 3. Boocock, J., et al., The distribution and impact of common copy-number variation in the genome of the domesticated apple, Malus x domestica Borkh. BMC Genomics, 2015. 16(1): p. 848. 4. Kanduri, C., et al., The genome-wide landscape of copy number variations in the MUSGEN study provides evidence for a founder effect in the isolated Finnish population. Eur J Hum Genet, 2013. 21(12): p. 1411-6. 5. Ruderfer, D.M., et al., Patterns of genic intolerance of rare copy number variation in 59,898 human exomes. Nat Genet, 2016. 48(10): p. 1107-11. 6. Zarrei, M., et al., A copy number variation map of the human genome. Nat Rev Genet, 2015. 16(3): p. 172-83. 7. Ni, X., et al., Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. Proc Natl Acad Sci U S A, 2013. 110(52): p. 21083-8. 8. Shaikh, T.H., et al., High-resolution mapping and analysis of copy number variations in the human genome: a data resource for clinical and research applications. Genome Res, 2009. 19(9): p. 1682-90. 9. The Genomes Project, C., et al., A global reference for human genetic variation. Nature, 2015. 526: p. 68. 10. Chen, W., et al., Copy number variation across European populations. PLoS One, 2011. 6(8): p. e23087. 11. Lou, H., et al., A map of copy number variations in Chinese populations. PLoS One, 2011. 6(11): p. e27341. 12. Suktitipat, B., et al., Copy number variation in Thai population. PLoS One, 2014. 9(8): p. e104355. 13. Sudmant, P.H., et al., Global diversity, population stratification, and selection of human copy-number variation. Science, 2015. 349(6253): p. aab3761. 14. Nowakowska, B., Clinical interpretation of copy number variants in the human genome. J Appl Genet, 2017. 58(4): p. 449-457. 15. Almal, S.H. and H. Padh, Implications of gene copy-number variation in health and diseases. J Hum Genet, 2012. 57(1): p. 6-13. 16. Shlien, A. and D. Malkin, Copy number variations and cancer susceptibility. Curr Opin Oncol, 2010. 22(1): p. 55-63. 17. Lin, C.H., et al., Molecular profile and copy number analysis of sporadic colorectal cancer in Taiwan. J Biomed Sci, 2011. 18: p. 36. 18. Lu, T.-P., et al., Integrated Analyses of Copy Number Variations and Gene Expression in Lung Adenocarcinoma. PLOS ONE, 2011. 6(9): p. e24829. 19. Li, B.-Q., et al., Classification of Non-Small Cell Lung Cancer Based on Copy Number Alterations. PLOS ONE, 2014. 9(2): p. e88300. 20. Zhang, N., et al., Classification of cancers based on copy number variation landscapes. Biochim Biophys Acta, 2016. 1860(11 Pt B): p. 2750-5. 21. Ohshima, K., et al., Integrated analysis of gene expression and copy number identified potential cancer driver genes with amplification-dependent overexpression in 1,454 solid tumors. Sci Rep, 2017. 7(1): p. 641. 22. Molparia, B., et al., A feasibility study of colorectal cancer diagnosis via circulating tumor DNA derived CNV detection. PLoS One, 2018. 13(5): p. e0196826. 23. Kleinjan, D.A. and V. van Heyningen, Long-range control of gene expression: emerging mechanisms and disruption in disease. Am J Hum Genet, 2005. 76(1): p. 8-32. 24. Merla, G., et al., Submicroscopic deletion in patients with Williams-Beuren syndrome influences expression levels of the nonhemizygous flanking genes. Am J Hum Genet, 2006. 79(2): p. 332-41. 25. Shlien, A. and D. Malkin, Copy number variations and cancer. Genome Med, 2009. 1(6): p. 62. 26. Ngamphiw, C., et al., PanSNPdb: The Pan-Asian SNP Genotyping Database. PLOS ONE, 2011. 6(6): p. e21451. 27. Xu, H., et al., SgD-CNV, a database for common and rare copy number variants in three Asian populations. Hum Mutat, 2011. 32(12): p. 1341-9. 28. Ahmed, P.H., et al., INDEX-db: The Indian Exome Reference Database (Phase I). J Comput Biol, 2019. 26(3): p. 225-234. 29. MacDonald, J.R., et al., The Database of Genomic Variants: a curated collection of structural variation in the human genome. Nucleic Acids Res, 2014. 42(Database issue): p. D986-92. 30. Hamosh, A., et al., Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res, 2002. 30(1): p. 52-5. 31. Firth, H.V., et al., DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am J Hum Genet, 2009. 84(4): p. 524-33. 32. Cao, Q., et al., CaSNP: a database for interrogating copy number alterations of cancer genome from SNP array data. Nucleic Acids Res, 2011. 39(Database issue): p. D968-74. 33. Carter, N.P., Methods and strategies for analyzing copy number variation using DNA microarrays. Nat Genet, 2007. 39(7 Suppl): p. S16-21. 34. Meyerson, M., S. Gabriel, and G. Getz, Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet, 2010. 11(10): p. 685-96. 35. Zhao, M., et al., Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives. BMC Bioinformatics, 2013. 14 Suppl 11(Suppl 11): p. S1. 36. Pavlopoulou, A., D.A. Spandidos, and I. Michalopoulos, Human cancer databases (review). Oncol Rep, 2015. 33(1): p. 3-18. 37. Yang, Y., et al., Databases and web tools for cancer genomics study. Genomics Proteomics Bioinformatics, 2015. 13(1): p. 46-50. 38. Noor, A.M., et al., Big Data: the challenge for small research groups in the era of cancer genomics. Br J Cancer, 2015. 113(10): p. 1405-12. 39. Costa, F.F., Big data in biomedicine. Drug Discovery Today, 2014. 19(4): p. 433-440. 40. 吳季芸, 臺灣人基因組的大規模拷貝數變異研究, in 臺灣大學生醫電子與資訊學研究所學位論文. 2017, 臺灣大學. p. 1-60. 41. Lin, C.H., et al., A genome-wide survey of copy number variations in Han Chinese residing in Taiwan. Genomics, 2009. 94(4): p. 241-6. 42. Lek, M., et al., Analysis of protein-coding genetic variation in 60,706 humans. Nature, 2016. 536(7616): p. 285-91. 43. Fromer, M., et al., Discovery and Statistical Genotyping of Copy-Number Variation from Whole-Exome Sequencing Depth. The American Journal of Human Genetics, 2012. 91(4): p. 597-607. 44. Tate, J.G., et al., COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res, 2019. 47(D1): p. D941-d947. 45. Van Loo, P., et al., Allele-specific copy number analysis of tumors. Proc Natl Acad Sci U S A, 2010. 107(39): p. 16910-5. 46. Ghandi, M., et al., Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature, 2019. 569(7757): p. 503-508. 47. Garnett, M.J., et al., Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature, 2012. 483(7391): p. 570-5. 48. Grobner, S.N., et al., The landscape of genomic alterations across childhood cancers. Nature, 2018. 555(7696): p. 321-327. 49. Barretina, J., et al., The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 2012. 483(7391): p. 603-7. 50. Patel, M.N., et al., Objective assessment of cancer genes for drug discovery. Nat Rev Drug Discov, 2013. 12(1): p. 35-50. 51. Koscielny, G., et al., Open Targets: a platform for therapeutic target identification and validation. Nucleic Acids Res, 2017. 45(D1): p. D985-D994. 52. Sondka, Z., et al., The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nature Reviews Cancer, 2018. 18(11): p. 696-705. 53. Dela Cruz, C.S., L.T. Tanoue, and R.A. Matthay, Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med, 2011. 32(4): p. 605-44. 54. Liu, L., et al., Identification of hallmarks of lung adenocarcinoma prognosis using whole genome sequencing. Oncotarget, 2015. 6(35): p. 38016-28. 55. Kanehisa, M., et al., New approach for understanding genome variations in KEGG. Nucleic Acids Res, 2019. 47(D1): p. D590-d595. 56. Song, W., et al., Exploring the landscape of pathogenic genetic variation in the ExAC population database: insights of relevance to variant classification. Genetics In Medicine, 2015. 18: p. 850. 57. Gilissen, C., et al., Disease gene identification strategies for exome sequencing. Eur J Hum Genet, 2012. 20(5): p. 490-7. 58. Richards, S., et al., Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med, 2015. 17(5): p. 405-24. 59. Li, W. and M. Olivier, Current analysis platforms and methods for detecting copy number variation. Physiol Genomics, 2013. 45(1): p. 1-16. 60. Szatkiewicz, J.P., et al., Copy number variation in schizophrenia in Sweden. Mol Psychiatry, 2014. 19(7): p. 762-73. 61. Li, S., et al., A remark on copy number variation detection methods. PLOS ONE, 2018. 13(4): p. e0196226. 62. Lee, S., et al., Korean Variant Archive (KOVA): a reference database of genetic variations in the Korean population. Scientific Reports, 2017. 7(1): p. 4287. 63. Méndez, M., A. Custodio, and M. Provencio, New molecular targeted therapies for advanced non-small-cell lung cancer. J Thorac Dis, 2011. 3(1): p. 30-56. 64. Yamamoto, H., et al., PIK3CA mutations and copy number gains in human lung cancers. Cancer Res, 2008. 68(17): p. 6913-21. 65. Scheffler, M., et al., PIK3CA mutations in non-small cell lung cancer (NSCLC): genetic heterogeneity, prognostic impact and incidence of prior malignancies. Oncotarget, 2014. 6(2): p. 1315-1326. 66. Weber, R., et al., Pathways regulating the expression of the immunomodulatory protein glycodelin in nonsmall cell lung cancer. Int J Oncol, 2019. 54(2): p. 515-526. 67. Kang, S., A.G. Bader, and P.K. Vogt, Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc Natl Acad Sci U S A, 2005. 102(3): p. 802-7. 68. Zhao, J.J., et al., The oncogenic properties of mutant p110alpha and p110beta phosphatidylinositol 3-kinases in human mammary epithelial cells. Proc Natl Acad Sci U S A, 2005. 102(51): p. 18443-8. 69. Samuels, Y. and K. Ericson, Oncogenic PI3K and its role in cancer. Curr Opin Oncol, 2006. 18(1): p. 77-82. 70. Leevers, S.J., B. Vanhaesebroeck, and M.D. Waterfield, Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Current Opinion in Cell Biology, 1999. 11(2): p. 219-225. 71. Posor, Y., M. Eichhorn-Grunig, and V. Haucke, Phosphoinositides in endocytosis. Biochim Biophys Acta, 2015. 1851(6): p. 794-804. 72. Kind, M., et al., Questioning the role of selected somatic PIK3C2B mutations in squamous non-small cell lung cancer oncogenesis. PLoS One, 2017. 12(10): p. e0187308. 73. Liu, P., et al., Identification of somatic mutations in non-small cell lung carcinomas using whole-exome sequencing. Carcinogenesis, 2012. 33(7): p. 1270-1276. 74. Boller, D., et al., Targeting PI3KC2beta impairs proliferation and survival in acute leukemia, brain tumours and neuroendocrine tumours. Anticancer Res, 2012. 32(8): p. 3015-27. 75. Russo, A., et al., Phosphatidylinositol 3-kinase, class 2 beta (PI3KC2beta) isoform contributes to neuroblastoma tumorigenesis. Cancer Lett, 2015. 359(2): p. 262-8. 76. Cumberbatch, M., et al., Identification of a Subset of Human Non–Small Cell Lung Cancer Patients with High PI3Kβ and Low PTEN Expression, More Prevalent in Squamous Cell Carcinoma. Clinical Cancer Research, 2014. 20(3): p. 595. 77. Ellingford, J.M., et al., Validation of copy number variation analysis for next-generation sequencing diagnostics. Eur J Hum Genet, 2017. 25(6): p. 719-724. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21538 | - |
| dc.description.abstract | 拷貝數變異(copy number variation, CNV)是一種基因變異,係指因DNA序列上存有大於1000個鹼基對的序列改變,所導致位於此序列改變區段之基因在拷貝數上偏離正常參考標準的情形。目前已有許多研究證實CNV可透過劑量效應(dosage effect)調節基因的表現,進而導致基因調節機制的失衡,並且影響包括癌症在內多種疾病的表現和進程。許多致力於探討癌症與CNV之間關聯的研究也提出了CNV在癌症的診斷與治療上作為生物標定物(biomarker)的關鍵作用。為了探討CNV在癌症中所扮演的角色,CNV相關的生物實驗數量在近年來有大幅增加的趨勢。儘管如此,截至目前仍沒有一個以CNV為導向的線上資源可以讓研究人員以系統化的方式獲取CNV相關資料並做出分析比較,進而耗費了過多的時間和精力。
因此在這項研究中,我們整合了來自健康族群,癌症病患和癌症細胞株的CNV概況,並建置了一個完善且對使用者友善的線上資料庫,以改善CNV數據探勘、檢索和分析的相關流程。我們除了收錄了22155個基因在健康人當中的CNV頻率以作為基準參考標準,也同時構建了70種人類癌症的CNV情形。最後亦透過這個資料庫的分析功能,比較542名肺腺癌患者和健康個體的CNV數據來進一步證實這個系統的潛在應用。我們希望透過網站上所提供的簡易查詢系統和在線分析模式來去除技術上的隔閡,並提供研究者高效且易於操作的分析平台。我們相信這個資料庫可作為CNV研究中一個重要的工具,幫助研究人員統一處理、比較和檢索CNV數據。除了協助探討CNV在疾病中扮演的角色以外,也可篩選出有潛力成為癌症標定物之基因。 | zh_TW |
| dc.description.abstract | Copy number variation (CNV) is a region with structural variation in which the genomic copy numbers (CN) differs when compared to the reference genome. It is classically defined as a genomic segment that consists of at least 1000 base pairs of sequence alterations. In human genome, CNV may cause genomic imbalance by regulating gene expression levels through dosage effect and has been associated with multiple disease, including cancer. Thus far, many researchers have studied the relationship between cancer and CNV, providing intriguing insights into CNV roles as cancer biomarker. Despite an intensive increase in the amount of related biological validation experiments, the distinct lack of an integrated resource that supports highly-efficient CNV research has drive our study to construct a comprehensive online database to simplify the data mining, retrieval, and analysis processes of CNV investigations. In this study, we integrate the CNV profiles of healthy populations, cancer patients, and cancer cell lines from various sources. The baseline CNV frequency of 22155 genes serving as comparisons benchmark were established, and we constructed the CNV profile of 70 types of human cancer. We further demonstrate the potential application of this system by analyzing CNV data from 542 lung adenocarcinoma patients. With the provision of an easy query and online submission analysis schema, we expect that this database would serve as an important tool to assist researchers in uniformly processing, comparing and retrieving CNV data, as well as in facilitating the clinical interpretation and discoveries of significant CNVs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:37:13Z (GMT). No. of bitstreams: 1 ntu-108-R06945042-1.pdf: 1360514 bytes, checksum: a436635b39ae592a8c572df8428826f5 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract III Content IV List of Figures VI List of Tables VII Chapter 1. Introduction 1 1.1 Copy number variation (CNV) 1 1.2 Population specific CNV 2 1.3 CNV and cancer predisposition 3 1.4 Resources for CNV investigation 4 1.4.1 Public databases and repositories 4 1.4.2 Limitations of current resources 6 1.5 Specific aims of this study 8 Chapter 2. Materials and Methods 10 2.1 Integrations of healthy populations datasets 10 2.1.1 Taiwan Copy Number Variation (TWCNV) 10 2.1.2 Exac Aggregation Consortium (EXAC) 11 2.2 Cancer CNV profile construction 13 2.2.1 Catalogue of Somatic Mutations In Cancer (COSMIC) 13 2.2.2 Cancer Cell Line Encyclopedia (CCLE) 14 2.3 Census genes annotation 15 2.4 Database construction 17 2.5 Analysis function and submission 18 Chapter 3. Results 20 3.1 Data distribution 20 3.2 Website interface overview 22 3.2.1 Gene-centric exploration 23 3.2.2 Cancer specific CNV profile 26 3.2.3 Analysis and result web-page 28 3.3 Analysis application example with lung adenocarcinoma 30 3.4 Identified pathways for CNV genes 31 Chapter 4. Discussion 33 4.1 An overview of this study 33 4.1.1 Data construction and application 33 4.1.2 Functional importance 34 4.2 CNV detection with arrays and whole-exome sequencing 35 4.3 Database features comparisons 36 4.4 PIK3-AKT signaling pathway in lung adenocarcinoma 38 4.5 The modulations of interferon genes 43 4.6 Limitations and future enhancements 44 4.6.1 Study constraint 44 4.6.2 Proposed enhancements 45 Chapter 5. Conclusion 48 Chapter 6. References 50 | |
| dc.language.iso | en | |
| dc.title | 建構健康族群與人類癌症拷貝數變異之整合型資料庫 | zh_TW |
| dc.title | A Comprehensive Database Integrating Copy Number Variation Profile in Healthy Individuals and Human Cancer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 盧子彬 | |
| dc.contributor.oralexamcommittee | 賴亮全,蔡孟勳 | |
| dc.subject.keyword | 拷貝數變異,健康臺灣族群,癌症CNV,資料庫,線上系統,使用者友善,肺腺癌, | zh_TW |
| dc.subject.keyword | copy number variation,healthy Taiwanese populations,cancer CNV,database,online system,user-friendly,lung adenocarcinoma, | en |
| dc.relation.page | 56 | |
| dc.identifier.doi | 10.6342/NTU201901550 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2019-07-23 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 1.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
