Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21533
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃乾綱
dc.contributor.authorWen-Jun Luoen
dc.contributor.author羅文君zh_TW
dc.date.accessioned2021-06-08T03:37:03Z-
dc.date.copyright2019-07-25
dc.date.issued2019
dc.date.submitted2019-07-24
dc.identifier.citation[1] Krizhevsky, A., I. Sutskever, and G.E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, in Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1. 2012, Curran Associates Inc.: Lake Tahoe, Nevada. p. 1097-1105.
[2] Hinton, G., et al., Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Processing Magazine, 2012. 29(6): p. 82-97.
[3] Kumar, A., et al. Ask Me Anything: Dynamic Memory Networks for Natural Language Processing. arXiv e-prints, 2015.
[4] 維基百科編者. 自然語言. 2018-10-26]; Available from: https://zh.wikipedia.org/w/index.php?title=%E8%87%AA%E7%84%B6%E8%AF%AD%E8%A8%80&oldid=51788729.
[5] 維基百科編者. 自然語言處理. 2019-05-03]; Available from: https://zh.wikipedia.org/w/index.php?title=%E8%87%AA%E7%84%B6%E8%AF%AD%E8%A8%80%E5%A4%84%E7%90%86&oldid=54272656.
[6] Capes, T., et al., Siri on-device deep learning-guided unit selection text-to-speech system. 2017: p. 4011-4015.
[7] Google Inc. Google Assistant. Available from: https://assistant.google.com/intl/zh_tw/.
[8] Wu, Y., et al. Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv e-prints, 2016.
[9] Alghoul, A., et al., Email Classification Using Artificial Neural Network. International Journal of Academic Engineering Research (IJAER), 2018. 2(11): p. 8-14.
[10] Dos Santos, C. and M. Gatti de Bayser, Deep Convolutional Neural Networks for Sentiment Analysis of Short Texts. 2014.
[11] Zheng, X., H. Chen, and T. Xu. Deep learning for Chinese word segmentation and POS tagging. in Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. 2013.
[12] Shao, Y., et al. Character-based Joint Segmentation and POS Tagging for Chinese using Bidirectional RNN-CRF. arXiv e-prints, 2017.
[13] Misawa, S., et al. Character-based Bidirectional LSTM-CRF with words and characters for Japanese Named Entity Recognition. in Proceedings of the First Workshop on Subword and Character Level Models in NLP. 2017. Copenhagen, Denmark: Association for Computational Linguistics.
[14] Ju, M., M. Miwa, and S. Ananiadou. A Neural Layered Model for Nested Named Entity Recognition. 2018. New Orleans, Louisiana: Association for Computational Linguistics.
[15] Ma, X. and E. Hovy End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF. arXiv e-prints, 2016.
[16] 盧國屏, 漢語語言學. 2009: 新學林出版股份有限公司.
[17] 維基百科編者. 詞類. 2019-05-14]; Available from: https://zh.wikipedia.org/w/index.php?title=%E8%A9%9E%E9%A1%9E&oldid=54419453.
[18] Jurafsky, D. and J.H. Martin, Speech and Language Processing. Vol. 3. 2014: Pearson London.
[19] 中國文化研究院. 現代漢語語法. Available from: https://www.chiculture.net/0615/html/index.html.
[20] 王曉龍 and 關毅, 計算機自然語言處理. 2005, 北京: 清華大學出版社.
[21] Huang, C.-R., Introduction to Academia Sinica Balanced Corpus. 1998.
[22] Yu, S., H. Duan, and Y. Wu, Corpus of Multi-level Processing for Modern Chinese. 2018, Peking University Open Research Data Platform.
[23] 劉群, 張華平, and 張浩, 計算所漢語詞性標記集. NLPIR: http://ictclas.nlpir.org/nlpir/html/readme.htm.
[24] Xia, F., The Part-of-Speech Tagging Guidelines for the Penn Chinese Treebank (3.0). IRCS Report, University of Pennsylvania, 2000.
[25] 賁可榮 and 張彥鐸, 人工智能. 2006, 北京: 淸華大學出版社.
[26] Greene, B.B. and G.M. Rubin, Automatic Grammatical Tagging of English. 1971: Department of Linguistics, Brown University.
[27] Francis, W.N., A Standard Corpus of Edited Present-Day American English. College English, 1965. 26(4): p. 267-273.
[28] David, A. Grammatical analysis by computer of the Lancaster-Oslo/Bergen (LOB) Corpus of British English texts. 1985. Chicago, Illinois, USA: Association for Computational Linguistics.
[29] Marshall, I., Choice of Grammatical Word-Class without Global Syntactic Analysis: Tagging words in the LOB corpus. Computers and the Humanities, 1983. 17(3): p. 139-150.
[30] Kupiec, J., Robust part-of-speech tagging using a hidden Markov model. Computer Speech & Language, 1992. 6(3): p. 225-242.
[31] Goldberg, Y. A Primer on Neural Network Models for Natural Language Processing. arXiv e-prints, 2015.
[32] Wang, P., et al., Part-of-Speech Tagging with Bidirectional Long Short-Term Memory Recurrent Neural Network. eprint arXiv:1510.06168, 2015: p. arXiv:1510.06168.
[33] Marcus, M.P., B. Santorini, and M.A. Marcinkiewicz, Building a Large Annotated Corpus of English: The Penn Treebank. Computational Linguistics, 1993. 19(2): p. 313-330.
[34] Hinton, G.E., Learning distributed representations of concepts. Parallel distributed processing: Implications for psychology and neurobiology. 1989, New York, NY, US: Clarendon Press/Oxford University Press. 46-61.
[35] Mikolov, T., et al., Distributed Representations of Words and Phrases and their Compositionality. 2013: p. 3111-3119.
[36] Mikolov, T., et al. Efficient Estimation of Word Representations in Vector Space. arXiv e-prints, 2013.
[37] Elman, J.L., Finding structure in time. Cognitive Science, 1990. 14(2): p. 179-211.
[38] Hochreiter, S., Untersuchungen zu dynamischen neuronalen Netzen. 1991, Master’s thesis, Institut fur Informatik, Technische Universitat, Munchen.
[39] Bengio, Y., P. Simard, and P. Frasconi, Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 1994. 5(2): p. 157-166.
[40] Olah, C., Understanding LSTM Networks. 2015, Medium: http://colah.github.io/posts/2015-08-Understanding-LSTMs/.
[41] Hochreiter, S. and J. Schmidhuber, Long Short-Term Memory. 1997. 9(8): p. 1735-1780.
[42] Gers, F., J. Schmidhuber, and F. Cummins, Learning to Forget: Continual Prediction with LSTM. Vol. 12. 2000. 2451-71.
[43] Cui, Z. and Y. Wang. Deep Stacked Bidirectional and Unidirectional LSTM Recurrent Neural Network for Network-wide Traffic Speed Prediction. 2017.
[44] 謝逸, et al., 基於CNN和LSTM混合模型的中文詞性標注. 武漢大學學報(理學版), 2017. 63(3): p. 246-250.
[45] Gal, Y. and Z. Ghahramani A Theoretically Grounded Application of Dropout in Recurrent Neural Networks. arXiv e-prints, 2015.
[46] Chollet, F., Keras - Embedding Layer. 2015, GitHub: https://keras.io/zh/layers/embeddings/.
[47] Řehůřek, R. and P. Sojka. Software framework for topic modelling with large corpora. in Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks. 2010. ELRA.
[48] 維基百科編者. Softmax函數. 2018-08-16]; Available from: https://zh.wikipedia.org/w/index.php?title=Softmax%E5%87%BD%E6%95%B0&oldid=50894294.
[49] Chollet, F., Keras - Softmax activation function. 2015, GitHub: https://github.com/keras-team/keras/blob/master/keras/layers/advanced_activations.py#L233.
[50] Prechelt, L., Early Stopping - But When?, in Neural Networks: Tricks of the Trade, G.B. Orr and K.-R. Müller, Editors. 1998, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 55-69.
[51] Chollet, F., Keras - Early Stopping. 2015, GitHub: https://keras.io/zh/callbacks/#earlystopping.
[52] 楊榮根 and 楊忠, 基於HMM中文詞性標注研究. 金陵科技學院學報, 2017(2017.01): p. 20-23.
[53] Ye, Z., et al. Part-of-speech tagging based on dictionary and statistical machine learning. in 2016 35th Chinese Control Conference (CCC). 2016.
[54] 韓霞 and 黃德根, 基於半監督隱馬爾科夫模型的漢語詞性標注研究. 小型微型計算機系統, 2015. 36(12): p. 2813-2816.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21533-
dc.description.abstract近年來,隨著人工智慧的快速發展,深度學習(Deep Learning)的技術也隨之蓬勃發展,並廣泛應用在各個領域,包括自然語言處理(Natural Language Processing,簡稱NLP)。
  詞性標記(Part-of-Speech tagging,簡稱POS tagging)是自然語言處理中的一項基礎任務,為句子中的每個詞都標上一個詞性類別的過程,是幫助電腦理解語言含義的關鍵。
  本論文主要針對現有基於深度學習的中文詞性標記方法,設計一個改善其模型方法並提升其標記準確率的詞性標記模型,採用Word2vec模型訓練詞嵌入(Word Embedding),並結合基於雙向長短期記憶網路(Bidirectional Long Short-Term Memory Network,簡稱BLSTM)的字符嵌入(Character Embedding)作為詞向量表示方法(Word Representation),再送入雙向長短期記憶網路模型提取上下文的特徵,進行詞性標記的任務。實驗結果顯示,使用此模型在中國大陸《人民日報》1998年1月份語料庫的詞性標記之整體準確率為96.28%,與未加入字符嵌入的基線模型(Baseline Model)相比提升0.76%;且未知詞(Out-of-Vocabulary,簡稱OOV)的詞性標記之準確率為81.51%,與基線模型相比提升10.81%。
zh_TW
dc.description.abstractIn recent years, with the rapid development of artificial intelligence, deep learning technology has also been widely applied to various fields, including natural language processing (NLP).
  Part-of-Speech tagging (POS tagging) is a basic task in NLP. It is a process of marking up a word in a text (corpus) with a particular part of speech to help the computer understand the meaning of the language.
  This thesis focuses on improving the model and the accuracy of the existing Chinese POS tagging model based on deep learning. The improved model uses bidirectional long short-term memory (BLSTM) to extract the context features applied to the Chinese POS tagging. The input is word representation which is the concatenation of word embedding trained by Word2vec model and the character embedding trained by BLSTM. Experimental results show that the overall accuracy of POS tagging of the corpus in the People’s Daily in China in January 1998 achieves 96.28%, which is 0.76% higher than the baseline model without the character embedding; the accuracy of the POS tagging of out-of-vocabulary (OOV) is 81.51%, which is 10.81% higher than the baseline model.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:37:03Z (GMT). No. of bitstreams: 1
ntu-108-R05525063-1.pdf: 4320541 bytes, checksum: b8e4212a5c8414d37f70194aa9505812 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
圖目錄 viii
表目錄 x
第一章 緒論 1
 1.1 研究背景 1
 1.2 研究動機與目標 2
 1.3 研究貢獻 2
 1.4 論文架構 3
第二章 相關研究探討 4
 2.1 中文詞性標記的理論基礎 4
 2.2 以往詞性標記研究的方法 5
 2.3 詞向量表示方法 6
 2.4 深度學習網路 8
  2.4.1 遞歸神經網路 8
  2.4.2 長短期記憶網路 8
  2.4.3 雙向長短期記憶網路 11
 2.5 詞性標記語料庫 12
第三章 中文詞性標記之模型 15
 3.1 研究流程 15
 3.2 資料前處理 15
 3.3 基線模型 18
  3.3.1 輸入層 19
  3.3.2 隱藏層 21
  3.3.3 輸出層 22
 3.4 本研究改善之模型 22
  3.4.1 問題定義 22
  3.4.2 中文詞向量表示方法之改善 23
  3.4.3 中文詞性標記模型之改善 24
 3.5 深度學習模型訓練與預測 25
第四章 研究結果與討論 27
 4.1 探討改善模型與基線模型之詞性標記能力 27
  4.1.1 實驗資料集 27
  4.1.2 評估方法 29
  4.1.3 實驗結果與討論 29
 4.2 探討不同訓練資料集比例對固定測試資料集的詞性標記能力之影響 41
  4.2.1 實驗資料集 41
  4.2.2 評估方法 42
  4.2.3 實驗結果與討論 43
 4.3 實驗對比與討論 49
第五章 結論與未來展望 51
 5.1 結論 51
 5.2 未來展望 52
參考文獻 53
附錄A 中國大陸《人民日報》語料庫之詞性編碼表 57
附錄B 中國大陸《人民日報》語料庫之資料分析 59
附錄C 語料庫隨機切分5次之資料集統計 62
附錄D 實驗模型之預測結果 68
附錄E 實驗結果之混淆矩陣 70
附錄F 固定測試資料集之資料集統計 74
dc.language.isozh-TW
dc.title基於深度學習之中文詞性標記研究與實現zh_TW
dc.titleResearch and Implementation of Chinese Part-of-Speech Tagging Based on Deep Learningen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳信希,李御璽,張恆華
dc.subject.keyword中文詞性標記,深度學習,自然語言處理,zh_TW
dc.subject.keywordChinese Part-of-Speech tagging,Deep Learning,Natural Language Processing,en
dc.relation.page75
dc.identifier.doi10.6342/NTU201901183
dc.rights.note未授權
dc.date.accepted2019-07-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
4.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved